

QUILPIE DRINKING WATER QUALITY MANAGEMENT PLAN

Service Provider ID 108

Document Control

Date	Description	Author
19/11/2012	for Council Approval	Alvin Feeney
22/08/2013	Approved	Alvin Feeney
5/12/2016	Issue	William Green
23/12/2016	Approved	William Green
20/10/2017	Issue	William Green
23/02/2018	Approved	William Green
17/04/2020	Amend and Release to Client	William Green
23/04/2020	Updated with clients comments and Released	William Green

GBA Project/Doc ID no.	200004 /
	337565

Contact for enquiries and proposed changes

If you have any questions regarding this document or if you have a suggestion for improvements, please contact George Bourne and Associates.

Phone07 4651 5177Emailadmin@gbassoc.com.au

TABLE OF CONTENTS

1	REGISTERED SERVICE DETAILS 1
	1.1 Further Information Required 2
	1.2 Legislative Requirements 3
	1.2.1 First Point of Contact
2	DETAILS OF INFRASTRUCTURE FOR PROVIDING THE SERVICE
	2.1 Quilpie Water Supply Scheme 5
	2.1.1 Schematic 5
	2.1.2 Source, Treatment And Distribution Details
	2.2 Eromanga Water Supply Scheme 7
	2.2.1 Schematic
	2.2.2 Source, Treatment and Distribution Details 10
	2.3 Key Stakeholders 14
3	IDENTIFY HAZARDS AND HAZARDOUS EVENTS16
	3.1 Quilpie Water Quality and Catchment Characteristics 16
	3.1.1 Physical and Chemical Water Quality Information 16
	3.1.1 (a) Summary 16
	3.1.1 (b) Interpretation 27
	3.1.2 Catchment Characteristics 27
	3.1.3 Hazard Identification
	3.1.4 Identifying and Documenting Hazards and Hazardous Events
	3.1.5 Hazard Identification (and Risk Assessment) Team
	3.2 Eromanga Water Quality and Catchment Characteristics
	3.2.1 Physical and Chemical Water Quality Information
	3.2.1 (a) Summary 33
	3.2.1 (b) Interpretation 45
	3.2.2 Catchment Characteristics 46
	3.2.3 Hazard Identification 47
	3.2.4 Identifying and Documenting Hazards and Hazardous Events
4	ASSESSMENT OF RISKS
	4.1 Methodology 53
	4.1.1 Site Visits, Interviews and Risk Assessment Workshop
	4.2 Assessment of Risk 55
	4.2.1 Assessment of Maximum Risk 55
	4.2.2 Existing Preventative Measures/Barriers
	4.2.3 Residual Risk 55
	4.3 Key Stakeholders 55
5	MANAGING RISKS
	5.1 Operation and Maintenance Procedures 57
	5.1.1 Information Management 58
	5.1.2 Document Control Procedures 59
	5.2 Management of Incidents and Emergencies

5.3 Risk Management Improvement Program	70
5.3.1 Quilpie RMIP	70
5.3.2 Eromanga RMIP	72
6 OPERATIONAL AND VERIFICATION MONITORING PROGRAMS	74
6.1 Operational Monitoring	74
6.2 Verification Monitoring	
6.2.1 Quilpie and Eromanga Verification Monitoring	
APPENDIX A DRINKING WATER QUALITY MANAGEMENT PLAN A APPLICATION	
/	
APPENDIX B WATER SUPPLY LAYOUTS SUPERIMPOSED ON AERIAL PHOTOS	
	84
APPENDIX B WATER SUPPLY LAYOUTS SUPERIMPOSED ON AERIAL PHOTOS	84 87
APPENDIX B WATER SUPPLY LAYOUTS SUPERIMPOSED ON AERIAL PHOTOS APPENDIX C BORE WATER REPORT CARD	84 87 107 DMANGA
APPENDIX B WATER SUPPLY LAYOUTS SUPERIMPOSED ON AERIAL PHOTOS APPENDIX C BORE WATER REPORT CARD APPENDIX DBORE CASING AND STRATA DETAILS APPENDIX E ACKNOWLEDGEMENT OF NON-POTABLE WATER SUPPLIES (ERC	84
APPENDIX B WATER SUPPLY LAYOUTS SUPERIMPOSED ON AERIAL PHOTOS APPENDIX C BORE WATER REPORT CARD APPENDIX DBORE CASING AND STRATA DETAILS APPENDIX E ACKNOWLEDGEMENT OF NON-POTABLE WATER SUPPLIES (ERO AND ADAVALE)	84

LIST OF FIGURES

Figure 1.1	Quilpie Location Map
Figure 1.2	Quilpie Shire Council
Figure 2.1	Quilpie Service Schematic Layout Source, Treatment and Distribution Details 6
Figure 2.2	Eromanga Service Schematic Layout
Figure 3.1	Quilpie - pH at 23°C
Figure 3.2	Quilpie - Total Hardness
Figure 3.3	Quilpie - Silica
Figure 3.4	Quilpie - Total Dissolved Solids
Figure 3.5	Quilpie – True Colour
Figure 3.6	Quilpie - Turbidity
Figure 3.7	Quilpie - Sodium
Figure 3.8	Quilpie - Chloride
Figure 3.9	Quilpie - Fluoride
Figure 3.10	Quilpie – Nitrate
Figure 3.11	Quilpie - Sulphate
Figure 3.12	Quilpie - Iron
Figure 3.13	Quilpie - Manganese
Figure 3.14	Quilpie - Zinc
Figure 3.15	Quilpie – Aluminium
Figure 3.16	Quilpie - Boron
Figure 3.17	GAB Recharge, Discharge and Flow
Figure 3.18	Eromanga pH at 23°C 37
Figure 3.19	Eromanga Total Hardness
	Eromanga Silica
	Eromanga Total Dissolved Solids
	Eromanga True Colour
	Eromanga Turbidity
	Eromanga Sodium
5	Eromanga Chloride
	Eromanga Fluoride
	Eromanga Nitrate
	Eromanga Sulphate
5	Eromanga Iron
	Eromanga Manganese
	Eromanga Zinc
i igui e 5.51	

Figure 3.32	Eromanga Aluminium	44
Figure 3.33	Eromanga Boron	44

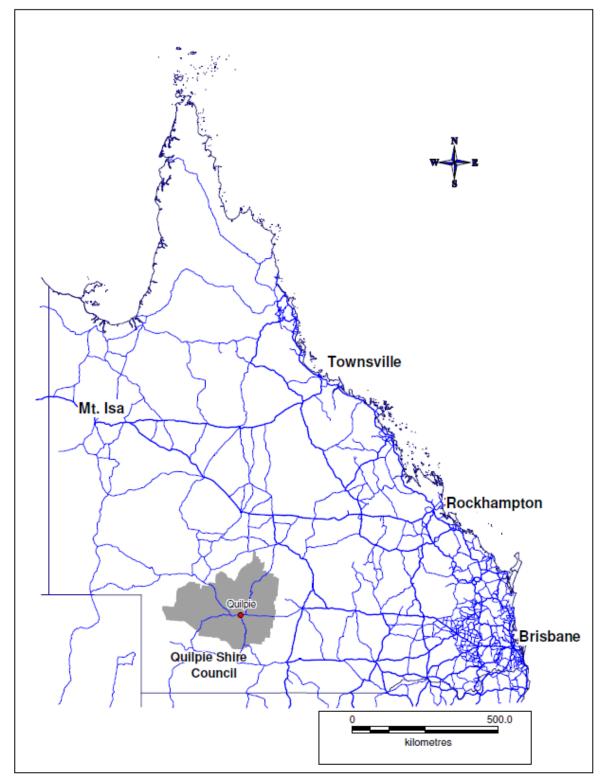

LIST OF TABLES

Table 1-1	Listing of Water Supply Schemes	. 3
Table1-2	Regulatory and Formal Requirements	. 3
Table 1-3	First Point of Contact	. 4
Table 2-1	Quilpie Infrastructure Details	. 6
Table 2-2	Eromanga Infrastructure supply and Reticulation Details	10
Table 2-3	Eromanga Water Treatment Plant Component Description	12
Table 2-4	Eromanga Water Treatment Plant Chemical Additive Description	14
Table 2-5	Quilpie Shire Council Stakeholders	14
Table 2-6	Quilpie Shire Council Staff: DWQMP Implementation Group	15
Table 3-1	Quilpie Reticulated Water	
Table 3-2	Quilpie Hazard Identification, Risk Assessment and Uncertainty	31
Table 3-3	Hazard Identification and Risk Assessment Team	33
Table 3-4	Eromanga Reticulated Water	34
Table 3-5	Eromanga Raw Water	
Table 3-6	Eromanga Hazard Identification, Risk Assessment and Uncertainty	
Table 4-1	Measures of Likelihood Utilised in the Risk Assessment	
Table 4-2	Measures of Consequences Utilised in the Risk Assessment	53
Table 4-3	Degrees of Uncertainty	53
Table 4-4	Risk Analysis Matrix – Level of Risk	54
Table 4-5	Defined Acceptable Risk Levels	54
Table 4-6	Stakeholders – Risk Assessment	
Table 5-1	DWQMP Operations and Maintenance Procedures QSC	57
Table 5-2	Staff Responsibilities: Information Management QSC	58
Table 5-3	Incident / Emergency Levels	60
Table 5-4	Management of Incidents and Emergencies	
Table 5-5	Community Notification Protocols	68
Table 5-6	DWSP Sensitive Users	
Table 5-7	Quilpie Risk Management Improvement Program	
Table 5-8	Eromanga Risk Management Improvement Program	
Table 6-1	Quilpie Operational Monitoring	75
Table 6-2	Eromanga Operational Monitoring	76
Table 6-3	Quilpie Verification Monitoring	
Table 6-4	Eromanga Verification Monitoring	80

1 REGISTERED SERVICE DETAILS

Quilpie Shire Council (QSC) is located in South Western Queensland and comprises the towns of Quilpie, Eromanga, Adavale and Cheepie covering an area of 67,482 km².

Figure 1.1 shows the location of the town of Quilpie relative to Brisbane, Rockhampton, Townsville and Mt. Isa.

Figure 1.1 Quilpie Location Map

QSC is the drinking water service provider (SPID 108) for the following water supply schemes in the region; (refer to Figure 1.2).

• Quilpie Water Supply Scheme

Quilpie is located approximately 217km west of Charleville and 1000km west of Brisbane.

Eromanga Water Supply Scheme

Eromanga is located 100km west of Quilpie.

QSC also provide a non-potable water supply to the Adavale Water supply scheme;

• Adavale Raw Water Supply Scheme (Non-potable)

Adavale is located 103km north of Quilpie.

Figure 1.2 Quilpie Shire Council

QSC is a small Drinking Water Service Provider (DWSP) as defined in the Water Supply (Safety and Reliability) Act 2008 and provides drinking water for an approximate population of 665 with a total demand of approximately 1.344 ML/d. QSC may be referred to as the DWSP throughout this document.

Refer to Appendix A Drinking Water Quality Management Plan Approval Application

1.1 Further Information Required

Table 1-1 Listing of Water Supply Schemes below lists the drinking water schemes, identifies the operational responsibilities for each scheme and details the current and future population and demand for each scheme.

Table 1-1 Listing of Water Supply Schemes

			Current (2016)		Fut	ure (2026)[1	1	
Schem e Name	Operator (organisatio n)	Communiti es Served	Populati on Served	Connectio ns	Deman d kL/d	Populati on Served	Connectio ns	Deman d kL/d
Quilpie	Quilpie	Quilpie	595	427	1200	515	369	1038
Eroman ga	Shire Council	Eromanga	45	43	104	39	39	90
Adavale		Adavale	15	19	40	13	13	35
Total			655	489	1344	567	421	1162

1.2 Legislative Requirements

The Water Supply (Safety and Reliability) Act 2008 (the Act) commenced on 1st July 2008. The purpose of the Act is to provide for the safety and reliability of water supply throughout Queensland.

The Act includes provisions relating to the management of drinking water quality, aimed at protecting public health. This outcome is achieved primarily through regulatory framework for drinking water quality which requires drinking water service providers to:

- Undertake monitoring and reporting on drinking water quality
- Have an approved drinking water quality management plan

The operation of a water service or a drinking water service will also be covered under other State and Commonwealth Legislation. It should be noted the requirements of Water Supply (Safety and Reliability) Act 2008 do not negate the requirements of other legislation unless where expressly stated. The provider is also responsible for obtaining any necessary approvals under the other Acts to ensure the continued operation of the service. State and Commonwealth legislation relating to the operations of a water service are detailed in table 1.2 below:

Table1-2 Regulatory and Formal Requirements

Requirement	Council obligations and how they relate to the DWQMP		
Water Supply (Safety and Reliability) Act 2008	Council registered as a service provider, given powers to do certain things (e.g. disconnect customers, restrictions).		
Water Supply (Safety and Reliability) Regulation 2011	Required to have an approved DWQMP and comply with the DWQMP.		
	Required to report and respond to drinking water incidents.		
Public Health Act 2005	Sets minimum sampling frequencies for E. coli as a provider.		
Public Health Regulation 2005	Council must not provide unsafe water.		
Disaster Management Act	Council is required to have a disaster management plan.		
2003	This plan links to the Emergency Plan in this document.		
Work Health and Safety Act 2011	Council must ensure safe work practices, including in the provision of drinking water.		

Requirement	Council obligations and how they relate to the DWQMP
Plumbing and Drainage Act (2002)	Council must ensure that water infrastructure work is at a particular standard.
Qld Plumbing and Wastewater Code (QPW code)	The code defines how drinking water infrastructure can be constructed.

1.2.1 First Point of Contact

In accordance with section 95(3) (b) of the Act it is a requirement, the first point of contact relating to the drinking water enquiries is the CEO of Quilpie Shire Council. The contact details for the CEO are as follows:

Table 1-3 First Point of Contact

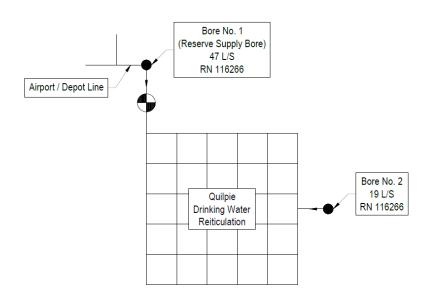
First Point of Contact: Contact Details		
Name	Tim Rose	
Position	Acting Chief Executive Officer	
Phone number	(07) 4656 0500	
Email	ceo@quilpie.qld.gov.au	

2 DETAILS OF INFRASTRUCTURE FOR PROVIDING THE SERVICE

QSC is the DWSP for two drinking water supply schemes. The infrastructure for providing the service is detailed in the sections outlined below:

- 2.1 Quilpie Water Supply Scheme
- 2.2 Eromanga Water Supply Scheme

For the Quilpie water supply scheme, water is untreated from an artesian water source, where the water is reticulated directly to the community's distribution systems, there is no water storage reservoir in Quilpie. Eromanga water supply was upgraded in 2014 with the commissioning of a reverse osmosis treatment plant and water storage facilities. Prior to the commissioning of the treatment plant, Eromanga's water supply was considered to be nonpotable, this scheme now provides good quality potable drinking water.


2.1 Quilpie Water Supply Scheme

Quilpie water supply scheme is sourced from two sealed artesian bores; Town Bore 1 and Town Bore 2, the bore water is sourced from 900m and 966m respectfully, the supply scheme relies on the bore pressure from the artesian supply to deliver water to customers without the use of reservoirs. Due to the high pressure of these bores pressure valves are installed at each bore to reduce pressure before being supplied into reticulation. Due to the sealed nature of theses bores and the depth that the water is sourced from, the likelihood of pathogenic contamination is greatly reduced compared to a surface water supply scheme.

Bore 2 is the primary water source for Quilpie's water supply scheme supplying the majority of the town. Bore 1's primary function is as a backup water supply in case of bore 2 failure. Bore 1 however is utilised on an ongoing basis to provide water to a small section of the reticulation system on the NW side of Quilpie, providing water to Quilpie Airport and the new council depot. The supply is restricted by a sluice valve running adjacent to bore 1 directing water to the new depot and airport.

2.1.1 Schematic

Figure 2.1 shows a schematic of the Quilpie's Water Supply Scheme. Refer to Appendix B for water supply layouts superimposed on aerial photos.

Figure 2.1 Quilpie Service Schematic Layout Source, Treatment and Distribution Details

2.1.2 Source, Treatment and Distribution Details

Table 2-1 provides the following information for Quilpie's infrastructure:

- Source details;
- Distribution and reticulation.

Table 2-1 Quilpie Infrastructure Details

Component		Quilpie Water Supply Scheme
Sources	Name	Quilpie Town Bore No. 2
	Туре	Deep Artesian Bore (RN116266)
	% of supply	100%
	Reliability	Does not run dry
	Water quality issues	Drinking water does not fully comply with the Australian Drinking Water Guidelines. Refer to 3.1.1 Physical and Chemical Water Quality Information
	Name Type % of supply Reliability Water quality issues	Quilpie Town Bore No. 1 Deep Artesian Bore (RN 390) 10% (back-up bore) Does not run dry Drinking water does not fully comply with the Australian Drinking Water Guidelines. Refer to 3.1.1 Physical and Chemical Water Quality Information
Sourcing	Туре	Deep Artesian Bore
Infrastructure	Description	Town Bore No. 1 is located on the corner of Chipu and Brolga Street. Town Bore No.2 is located on the corner of Gyrica and Winchu street. Town Bore No.1 and Town Bore No. 2 are 900m and 966m deep respectively. Town Bore No. 1 is predominantly used as a back-up bore, it provides water to a small part of the reticulation system, including, the new council depot and the airport on the NW side of town. Bore No 1 has the capacity to yield 47 I/s if required. Town Bore No.2 currently yields 19I/s. Both bores are free flowing and deliver enough pressure to distribute water directly into the reticulation without pumping. Refer to APPENDIX D BORE CASING AND STRATA DETAILS for bore construction details.
Are there any sources that do not undergo treatment prior to supply?	Yes Quilpie Town Bore No.1 and Quilpie Town Bore No. 2	
Are there any sources that do not undergo disinfection prior to supply?	Yes Quilpie Town Bore No.1 and Quilpie Town Bore No. 2.	

Component		Quilpie Water Supply Scheme					
Distribution and	Pipe material	AC					
Reticulation System	Age range	28 - 57					
	Approx. % of total length	60%					
	Approx. length	8.3km					
	Pipe material	DICL					
	Age range	28 - 57					
	Approx. % of total length	24%					
	Approx. length	3.7km					
	Pipe material	HDPE					
	Age range	0 - 34					
	Approx. % of total length	13.2%					
	Approx. length	1.83km					
	Areas where potential long detention periods could be expected	None					
	Areas where low water pressure (e.g. < 12 m) could be expected during peak or other demand periods)	None					
Water quality responsibility changes	Entire water supply scheme	Quilpie Shire Council					

2.2 Eromanga Water Supply Scheme

Eromanga water supply scheme has undergone a significant upgrade in recent times. In 2014 a new supply scheme was developed sourcing water from four shallow sub artesian bores in the township of Eromanga. Each bore has an electric submersible pump which supplies water on demand to a common raw water tank as determined by an automated level control system. Level switches in each bore determine the availability of water in each bore. Bore locations are:

- Bore 1 : Town hall
- Bore 2 : Town hall
- Bore 3 : School oval
- Bore 4 : House opposite council depot

A reverse osmosis and chlorine dosing system brings the raw water to a potable standard and transfers the treated water to the clean water tank as required to maintain the set level in the tank. The treatment plant can run automatically performing all necessary back flushing to ensure continuous water output.

Treated water is drawn from the clean water tank and pressure is maintained by the two clean water pumps and fed to the town supply on demand.

The complete system is controlled and monitored by a PLC (programmable logic controller) with an HMI (Human Machine Interface) panel in the main control building. Radio links between each

of the four bores and the main control provide run signals to pumps and fault indications back to the PLC and HMI touchscreen.

2.2.1 Schematic

Figure 2.2 shows a schematic of the Eromanga water supply scheme. Refer to appendix B for water supply layouts superimposed on aerial photos.

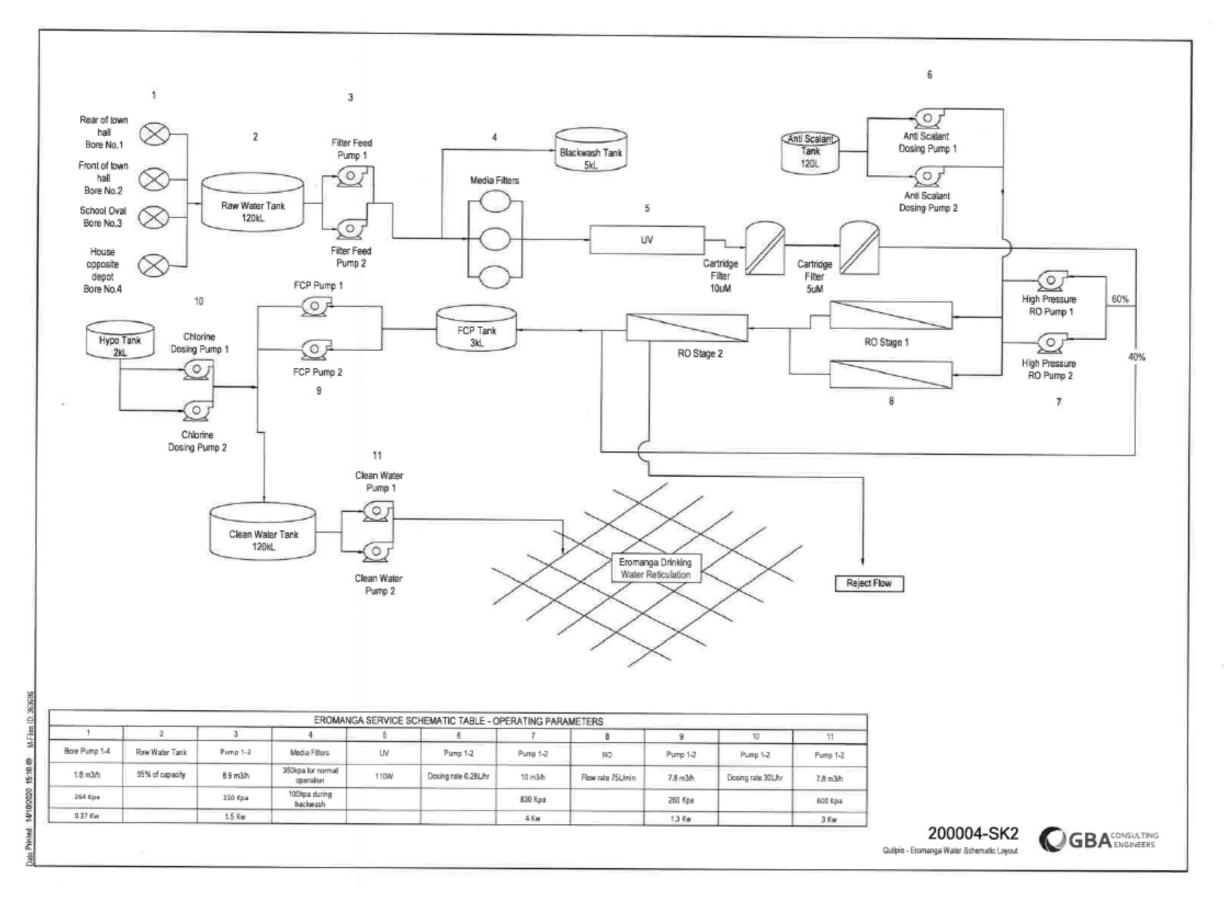


Figure 2.2 Eromanga Service Schematic Layout

2.2.2 Source, Treatment and Distribution Details

Table 2.2 and Table 2.3 provide the following information for Eromanga's infrastructure:

- Source details;
- Distribution and reticulation.
- Plant component and descriptions (Table 2.3)

Table 2-2 Eromanga Infrastructure supply and Reticulation Details

Component		Eromanga Water Supply (Potable)				
Source	Name Type % of supply Reliability Water Quality Issues	Eromanga Hall Bore (front) Sub Artesian Bore 25% Refer to 3.2.1 Water Quality Information				
Sourcing Infrastructure	Type Description	Sub Artesian Bore Eromanga Hall Bore (front) is located at the Western side of town on Deacon St. The bore is 29.6m deep, yields 1.63l/s with an electric submersible pump located at top of screen at 23.60m.				
Source	Name Type % of supply Reliability Water Quality Issues	Eromanga Hall Bore (Rear) Sub Artesian Bore 25% Refer to 3.2.1 Water Quality Information				
Sourcing infrastructure	Type Description	Sub Artesian Bore Eromanga Hall Bore (Rear) is located on the Western side of town on Deacon St. The bore is 42m deep, yields 3.1l/s with an electric submersible pump located at top of screen at 22.5m.				
Source	Name Type % of supply Reliability Water Quality Issues	Eromanga House Bore Sub Artesian Bore 25% Permanent Refer to 3.2.1 Water Quality Information				
Sourcing Infrastructure	Type Description	Sub Artesian Bore Eromanga House Bore is located on the northern side of town at Lot 6 on Neal St. The bore is 29.8m deep. The bore currently yields 1.09 l/s with an electric submersible pump located at top of screen at 23.80m.				
Source	Name Type % of supply Reliability Water Quality Issues	Eromanga School Bore Sub Artesian Bore 25% Permanent Refer to 3.2.1 Water Quality Information				

Component		Eromanga Water Supply (Potable)			
Sourcing Infrastructure	Type Description	Sub Artesian Bore Eromanga School Bore is located on southern side of town within the school grounds on Donald St next to the swimming pool. The bore is 25m deep. The bore currently yields 2 I/s with an electric submersible pump located at top of screen at 19m.			
Are there any sources that do not undergo treatment prior to supply	No				
Are there any sources that do not undergo disinfection prior to supply	water source during plant f from Quilpie. The bore ope supply water for animals or	ore. Potentially used as an alternate failure if water cannot be transported rates currently on a continual basis to n the town common and for wash down y. The bore can be connected quickly if			
Distribution and Reticulation System	Pipe material Age range Approx. % of total length Approx. length	AC 33-35 27.5% .413km			
	Pipe Material Age range Approx. % of total length Approx. length	DICL 30+ 70% 1.048km			
	Pipe material Age range Approx. % of total length Approx. length	Poly 0-8 .25% .4			
	Areas where potential long detention periods could be expected	Areas of potential long detention periods may include municipal areas that are not used on a daily basis such as the town hall, other areas may include accommodation in off peak season where utilisation rates are low.			
	Areas where low water pressure (e.g. <12m) could be expected during peak or other demand periods.	Treated water delivery consists of two modern delivery pumps with dedicated pressure sensors for each pump, the two pumps are set-up in a lead/lag configuration to maintain a discharge at approximately 28psi. Low water pressure in the system may occur due to mains breakages or other malfunctions.			
Water quality responsibility changes	Entire water supply scheme	Quilpie Shire Council			

Component	Component Description
Raw Water Tank	There are four shallow sub-artesian bores in the township of Eromanga, each have an electric submersible pump which supplies water on demand to a common Raw Water tank as determined by an automated level control system. The Raw Water tank is fitted with a pressure sensor to determine the water level; this is fed back to the Programmable Logic Controller (PLC) which communicates with the bore systems via a radio network. The four bore pumps operate simultaneously and the flow rates are monitored and recorded on the Human Machine Interface (HMI). The Raw Water tank level low set point starts the bore pumps and the Raw Water tank level high set point stops the pumps. There is also a pressure set point that triggers a high pressure fault and shuts the pump down. The common Raw Water tank and the Clean Water tank were constructed with the same specifications. The grounded Clean Water tank is constructed from reinforced concrete and capped with a pitched galvanised steel roof, to protect from vermin and direct stormwater run-off. The Clean Water tank was constructed with a height of 2.4, diameter of 8.6m and capacity of 120kL.
Media Filter Pumps	The Raw Water tank provides flooded suction to two pumps at the head of the water treatment plant. The two pumps provide water to the media filter pre- treatment skid and feed the entire water treatment system. They are configured as duty/standby to ensure that the water supply maintained even in the event of a fault with one of the pumps. The pumps are controlled with individual VSDs (variable speed drives) to maintain a set discharge pressure as measured by a pressure sensor at the filter inlet. The pressure sensor also provides low pressure set points which shutdown the pumps. The pumps have a rotating duty cycle to ensure that the run hours are kept approximately equal for each pump. The pumps are integrated with the entire plant and will operate in auto with the following circumstances: • Raw water tank level above Low set point.
	 RO plant is running or backwash cycle is running
Media Filter Pre- treatment	The pre-treatment component consists of three pressurized media filters in parallel, designed and installed to prevent fouling of the RO system. The arrangement of media is intended to remove the largest particles at the top of the media bed, while smaller particles are retained deeper and deeper in the media. This allows the entire bed to act as a filter allowing much longer filter run times between backwash and more efficient particulate removal. Each media filter has two motorised valves associated with it: a normally open valve for inlet stream going into the top of the filter, and a normally closed valve for the backwash waste stream coming out the top of the filter. Filtration is the default mode in which the raw water passes through the three filters (from top to bottom) and to the RO. In this mode all filter inlet valves are open and all backwash valves are closed. The duty feed pump runs to maintain filter inlet pressure at a set-point. A filter backwash cycle is triggered intermittently to remove any solids and impurities that have accumulated on the surface of the filter media. The cycle uses the filtered water from two of the filters to pass through the third filter in the reverse direction at a high velocity.
Ultra Violet Light Disinfection System	Prior to the RO plant a UV module is installed to inactivate biological organisms from the filtered water to minimize the chance of fouling the RO membranes. The UV will also prevent biological growth from occurring in the water during periods of inactivity. The UV remains on all the time and will raise an alarm if there is a lamp or power failure.
Reverse Osmosis Process	The RO plant treats 60% of the filtered water from the media filters to reduce the salinity of the water to achieve Australian Drinking Water Guidelines (ADWG) requirements by passing it at a high pressure through eight semi-

Component	Component Description
	permeable membranes. The remaining 40% of the filtered water bypasses the RO and is blended with the pure RO water (permeate). The stream that bypasses the RO equipment from the media filters and blends with the RO permeate is controlled by a modulating valve. The valve is modulated to meet a set conductivity based upon the conductivity reading on the blended water.
	The RO feed pressure sensor also prevents the pumps from dry running (i.e. low suction pressure) by raising an alarm and stopping the pumps. The high pressure pumps will try to restart three times automatically after a low inlet pressure fault, if it continues to get the fault after the third try the pump will stop until the operator resets the fault.
	The RO has pre-membrane and post membrane pressure sensors which provide pressure indication to the HMI. Alarms are provided for high pressure readings with high differential pressure inhibitors installed to protect equipment. The output of the RO plant is regulated by the speed of the high pressure pumps and by throttling the brine water flow and recycling water flow via manual globe valves.
	There are two duty/standby anti-scalant dosing pumps that operate at a fixed dose rate while the RO is operating. These pumps dose an anti-scalant chemical solution into the feed water to prevent the build-up of scale.
FCP Pumps	There are two duty/standby FCP pumps that transfer blended permeate water from the FCP tank to the Clean Water tank. The pumps are started and stopped based on high and low FCP tank level set points. The tank level is measured by a pressure sensor mounted on the bottom of the tank. The pumps are started Direct-On-Line (DOL) and run at a fixed flow. A magnetic flow meter measures the discharge flow to the Clean Water tank and inhibits the pumps in the event of a no flow alarm. This no flow alarm is triggered if a pump is running and there is no flow through the flow meter.
Chlorine Dosing	The chlorine dosing treatment occurs during the transfer of blended permeate water from the FCP tank to the Clean Water tank.
	There are two duty/standby chlorine dosing pumps that inject Sodium Hypochlorite into the FCP pump discharge line at a rate dependant of water usage and target residual levels, with a maximum performance of 30L/hr. The required chlorine dosage is set via the dosing pump speed and is not regulated automatically. These pumps draw from the 2kL Sodium Hypochlorite tank located in the bulk storage area.
	The duty dosing pump can be run in auto or manual modes as selected through HMI. The switch on the control cabinet bypasses the PLC to allow the pumps to run in the event of a PLC malfunction.
	The chlorine storage tank has low level protection for the dosing pumps. If a low level alarm is activated the system will stop until the tank is refilled. A chlorine tank low level alarm will also inhibit the entire system from operating (excluding the bore pumps) as the chlorination process is a critical component. The Chlorine Dosing pumps are intended to operate only when the FCP Pumps are delivering water to the Clean Water tank; therefore the dosing pumps are
	inhibited whenever the FCP pumps are NOT running in auto.
Clean Water Tank	A reverse osmosis and chlorine dosing system brings the raw water to a potable standard, the treated water is then transferred to the Clean Water tank as required to maintain the set level in the tank. Treated water is drawn from the Clean Water tank and pressure is maintained by the two Clean Water pumps and fed to the town supply on demand. The Clean Water tank level and high/low set-point values are monitored along with the Clean Water pump operating status. As part of the monitoring, a high alarm is generated when the tank level

Component	Component Description					
	is below 15%, the low level alarm will inhibit the operation of the Clean Water supply pumps until the level is raised.					
	For Clean Water tank specifications refer to Raw Water tank entry.					
Clean Water Pumps	The Clean Water pump set is a stand-alone E-Boost pressure system consisting of two delivery pumps with dedicated variable speed drives and pressure sensors for each pump. Although the Clean Water pumps act as a standalone system, they are interlocked with the Clean Water tank level and will be inhibited if the Clean Water tank lo-lo level alarm is activated. The pumps are set-up in a lead/lag configuration to maintain the discharge pressure at approximately 28 psi. The control system interfaces with the pumps system for monitoring and also provides low tank level protection.					

Table 2-4 Eromanga Water Treatment Plant Chemical Additive Description

Chemical	Product	Function			
Sodium Hypochlorite	Focus Pool Liquid Chlorine	Disinfection of treated water dosed into the transfer line to clean water tank			
Polycarboxylic acid	Flocon antiscalant	Anti-scaling solution to prevent membrane scaling dosed prior to RO filtration at a fixed rate while FCP pumps are running.			

2.3 Key Stakeholders

Table 2-5 below outlines the relevant stakeholders for QSC water supply schemes in Quilpie, Eromanga and Adavale.

Table 2-7 below identifies Quilpie Shire Council Staff members responsible for the implementation of the DWQMP mentioned in this Plan.

 Table 2-5 Quilpie Shire Council Stakeholders

Organisati on	Contact Name and Details	Relevance to management of drinking water quality	How the stakeholder is engaged in the DWQMP		
Quilpie Shire Council	Tim Rose Acting Chief Executive Officer P: (07) 4656 0500 E: <u>ceo@quilpie.qld.gov.au</u>	Small Drinking Water Service Provider	Small Drinking Water Service Provider		
Queensland Health Forensic & Scientific Services	P: (07) 3274 9070	Water Analysis Authority	Chemical Analysis and Reporting on Water Quality		
George Bourne & Associates	P: (07) 4651 5177	Consultancy Services	Preparation of DWQMP, Engineering services water supply		

Organisati on	Contact Name and Details	Relevance to management of drinking water quality	How the stakeholder is engaged in the DWQMP
Quilpie Shire Community	Quilpie Shire Council 50 Brolga Street PO Box 57 Quilpie Qld 4480 Phone (07) 4656 0500 Fax (07) 4656 1441 Email: admin@quilpie.qld.gov.au	Residents, businesses and travellers	Consumption of water
Queensland Health Public Health Unit	Darling Downs Public Health Unit Queensland Health Building Cnr Tor and Hogg Streets, Toowoomba Qld 4350 P:46998240	Public Health	Public Health
Department of Natural Resources Mines and Energy (DNRME)	Drinking Water Supply Regulator (DNRME) PO Box 2454 Brisbane Q 4001 <u>drinkingwater.reporting@dnrme.qld.go</u> <u>v.au</u> (Phone - Water 1300596709)	Regulatory Body	Regulatory Body

*Note – QSC is in the process of procuring a contractor for the routine maintenance of the Eromanga water treatment plant.

Table 2-6 Quilpie Shire Council Staff: DWQMP Implementation Group

Role	General description of Responsibilities						
CEO	High level management, Capital expenditure, Incident management and response						
Engineer	Capital expenditure, project planning and implementation, asset management, incident management and response. Administration of DWQMP, Data management, incident reporting, data analysis, document control, risk assessment.						
Water Officer	Implementation of DWQMP, operational monitoring, water sampling, system maintenance						

3 IDENTIFY HAZARDS AND HAZARDOUS EVENTS

3.1 Quilpie Water Quality and Catchment Characteristics

Quilpie water supply is composed of two deep artesian bores which are not treated prior to reticulation.

3.1.1 **Physical and Chemical Water Quality Information**

Water quality information for Quilpie includes the following:

- (a) Summary
- (b) Interpretation

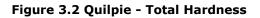
3.1.1 (a) Summary

Table 3-1 below summarises the available reticulated water quality for the Quilpie water supply scheme.

Figure 3.1.1 to Figure 3.1.16 below shows trends of the main characteristics contained in Table 3-1.

Analysis of Quilpie's water quality shows exceedances of ADWG Guidelines for pH, Sodium and Fluoride. Continued monitoring of Quilpie's water supply have revealed naturally occurring Fluoride in concentrations that exceed ADWG health guideline limits, with an average value of 1.75mg/l. Ongoing exposure to high fluoride levels in drinking water have the potential to cause adverse health impacts. The effects of fluoride concentrations found in Quilpie's Drinking water supply include dental fluorosis which has the potential to stain developing teeth in infants. A more serious impact on health caused by high Fluoride levels includes skeletal fluorosis which only occurs in very high levels of fluoride in drinking water, above those levels experienced in Quilpie. Ongoing monitoring of Fluoride in Quilpie's drinking water supply will be undertaken relating to allow the detection of increased health risk in the future. Information on the management of elevated fluoride levels are discussed further in section 5 Risk Management.

The concentrations of sodium in Quilpie's Drinking water supply are consistently above ADWG aesthetic thresholds, the presence of sodium in water supplies is common in ground water due to the high solubility of sodium salts and the abundance of mineral deposits. The concentrations of sodium in Quilpie's drinking water supply do not pose a great risk to human health however may be of concern to people suffering from severe hypertension. The concentrations present in the water supply may have an effect on the taste of the water where ADWG advise that taste becomes appreciable at 180mg/l.


Slightly high pH readings are typical for Quilpie's water supply with an average value of 8.5, issues surrounding increased pH values may include increased scaling in water pipes and fittings. Elevated pH ranges are not uncommon in artesian water supplies in Western Queensland and are associated with hydrogeological processes within the artesian basin.

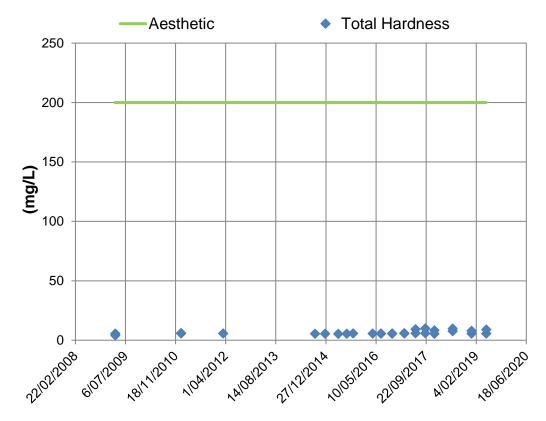
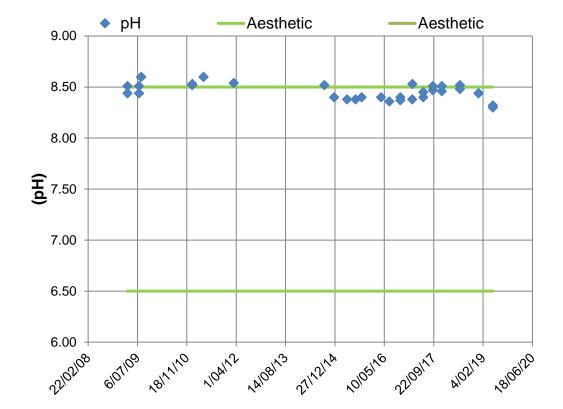

The responsibility for obtaining the water samples rests with the DWSP and samples are collected by the Water Officer on a quarterly basis. Samples are sent to Queensland Health Scientific Services for analysis.

Table 3-1 Quilpie Reticulated Water


Quilpie Water Supply Start Date			25/03/20 09		End Date:	14/05 /2019					
Characteristic Units No. of Samples		Summary of Results				Guideline Value					
		Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedances
Conductivity	uS/cm	29	975.0	907.31	854.00	38.32	972.00				
рН		35	9.3	8.49	8.30	0.16	8.60			≥6.5 & ≤ 8.5	15
Total Hardness	mg/L as CaCO₃	29	10.0	6.39	4.20	1.48	9.60				
Temporary Hardness	mg/L as CaCo₃	29	10.0	6.39	4.20	1.48	9.60			200	0
Alkalinity	mg/L CaCo₃	29	369.0	329.17	307.00	19.04	368.20				
Residual Alkalinity	meq/L	29	7.2	6.44	6.00	0.37	7.16				
Silica	mg/L	29	44.0	42.83	41.00	0.79	44.00			80	0
Total Dissolved Ions	mg/L	58	778.0	698.79	662.00	35.36	769.40				
Total Dissolved Solids	mg/L	29	600.0	545.28	520.00	24.15	592.20			600	0
True Colour	Hazen	18	5.0	1.50	1.00	1.12	4.15			15	0
Turbidity	NTU	32	1.0	0.30	0.25	0.18	0.59			5	0
Sodium	mg/L	29	230.0	207.48	195.00	10.14	230.00			180	29
Potassium	mg/L	29	2.7	2.34	2.20	0.10	2.50				
Calcium	mg/L	29	4.1	2.51	1.70	0.59	3.78				
Magnesium	mg/L	18	0.3	0.03	0.00	0.07	0.13				
Hydrogen	mg/L	29	0.0	0.00	0.00	0.00	0.00				
Bicarbonate	mg/L	29	435.0	386.10	356.00	22.76	431.00				
Carbonate	mg/L	29	13.0	7.46	4.30	2.26	12.00				
Hydroxide	mg/L	29	0.1	0.05	0.00	0.05	0.10				
Chloride	mg/L	29	95.0	83.97	80.00	3.59	89.60			250	0
Fluoride	mg/L	35	1.9	1.70	1.50	0.09	1.80	1.5	33		
Nitrate	mg/L	16	0.5	0.50	0.50	0.00	0.50	50	0		
Sulphate	mg/L	33	9.0	7.89	6.00	0.90	9.00	500	0	250	0
Iron	mg/L	32	0.03	0.01	0.01	0.01	0.03			0.3	0
Manganese	mg/L	16	0.01	0.009	0.000	0.002	0.010	0.5	0	0.1	0
Zinc	mg/L	22	0.53	0.055	0.003	0.141	0.448			3	0
Aluminium	mg/L	29	0.09	0.051	0.039	0.009	0.062			0.2	0
Boron	mg/L	37	0.63	0.485	0.060	0.087	0.602	4	0		
Copper	mg/L	20	0.49	0.072	0.009	0.125	0.405	2	0	1	0

Aesthetic Guideline
Exceedance
Health Guideline
Exceedance

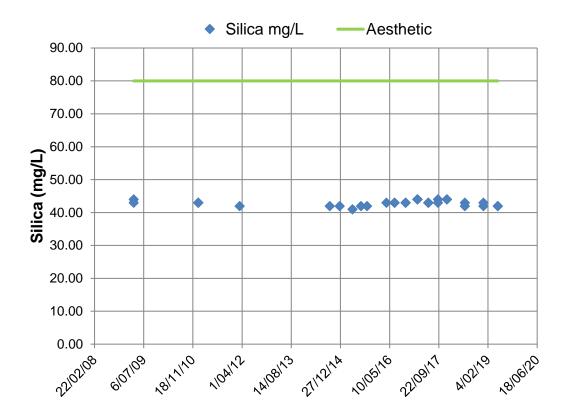


Figure 3.3 Quilpie - Silica

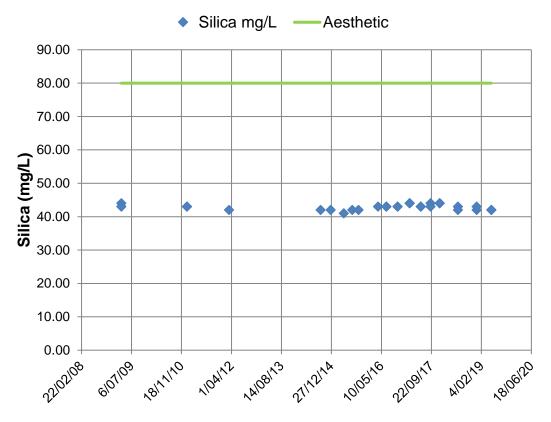


Figure 3.4 Quilpie - Total Dissolved Solids

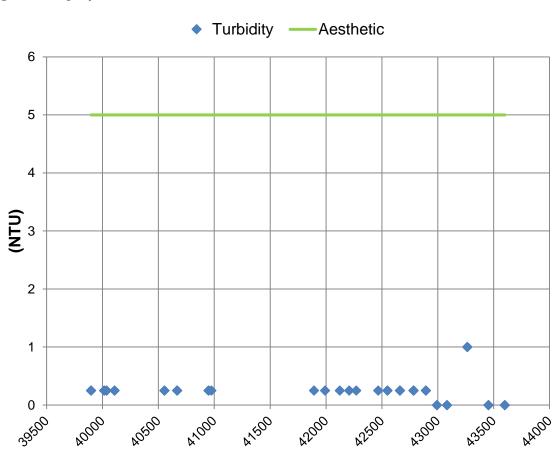
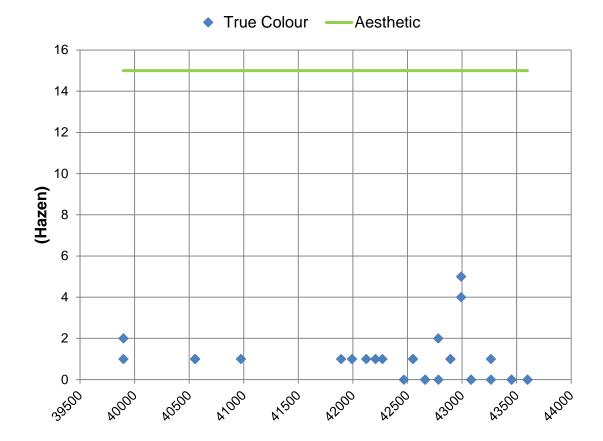
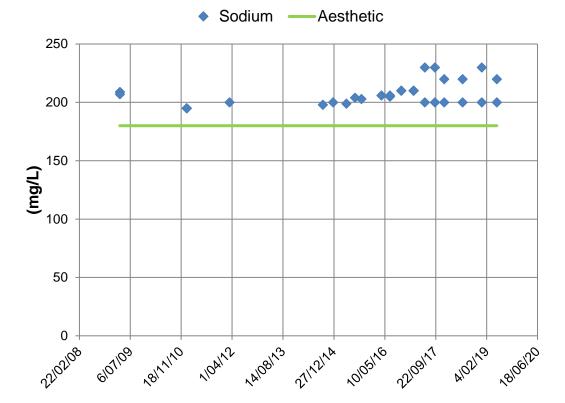
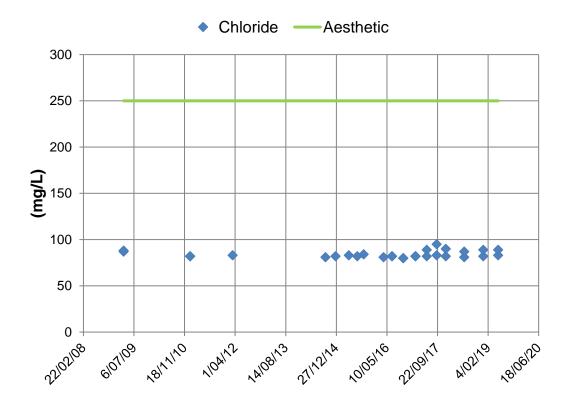
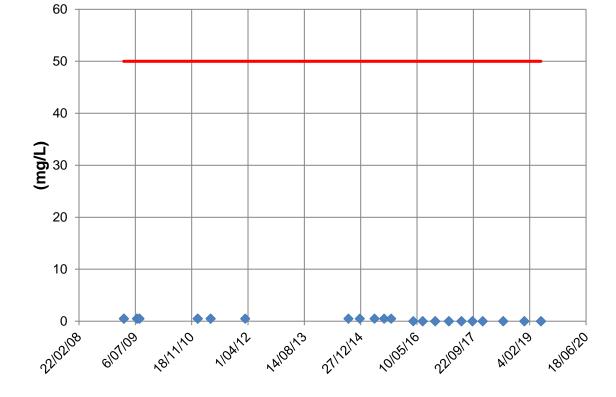
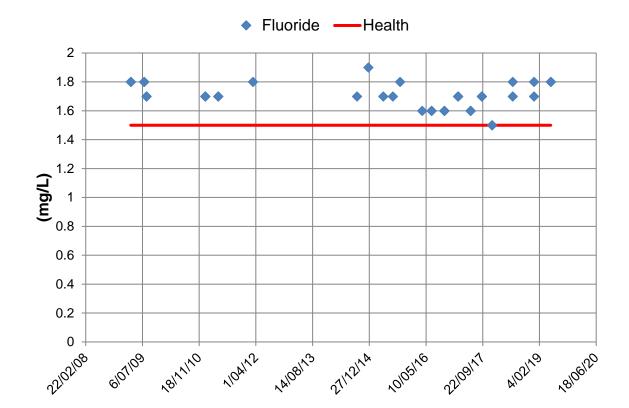
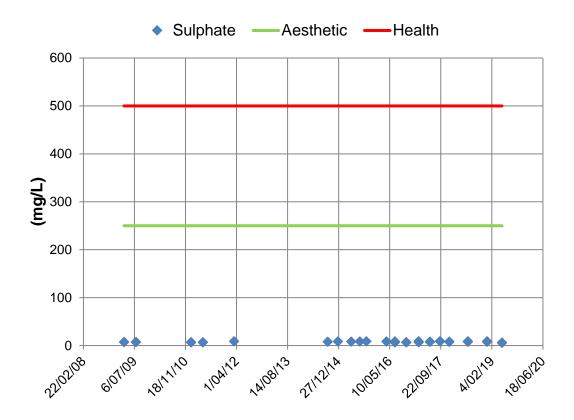




Figure 3.5 Quilpie – True Colour


Figure 3.8 Quilpie - Chloride


Figure 3.10 Quilpie – Nitrate

Nitrate — Health

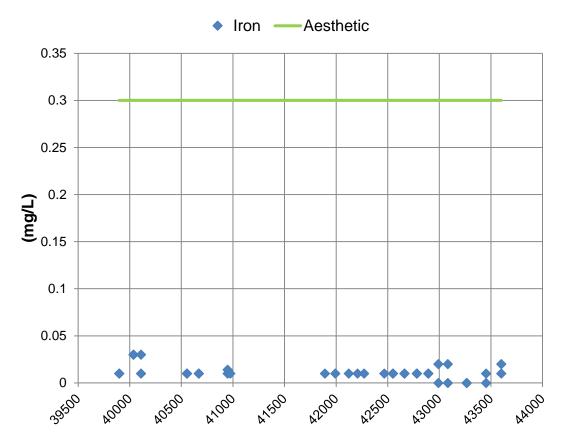


Figure 3.12 Quilpie - Iron

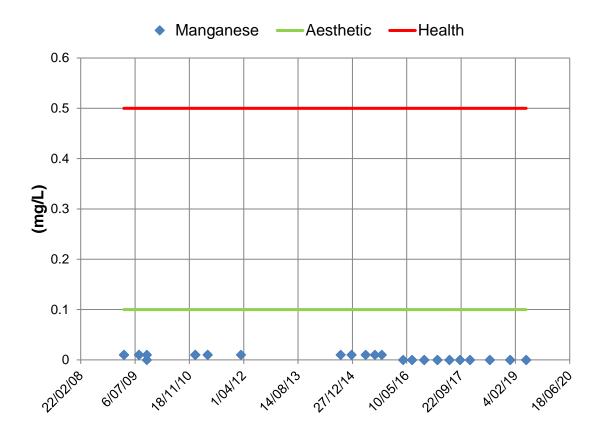


Figure 3.13 Quilpie - Manganese

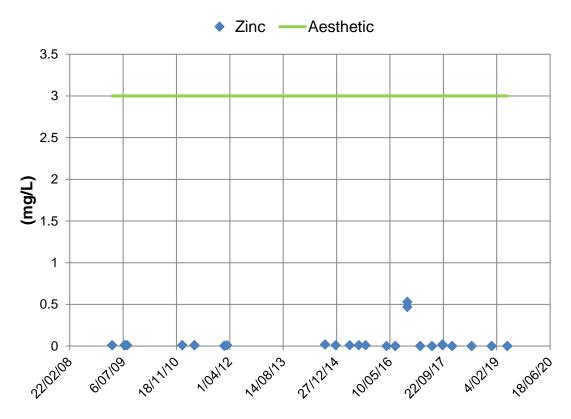
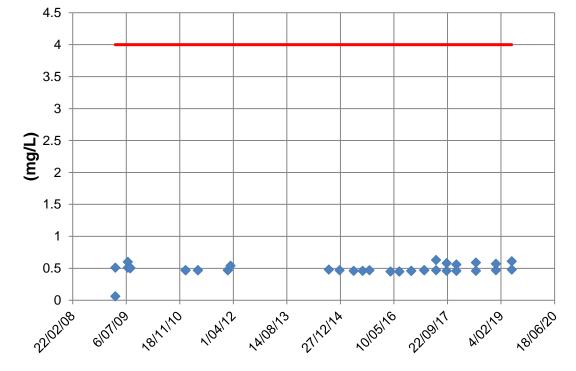
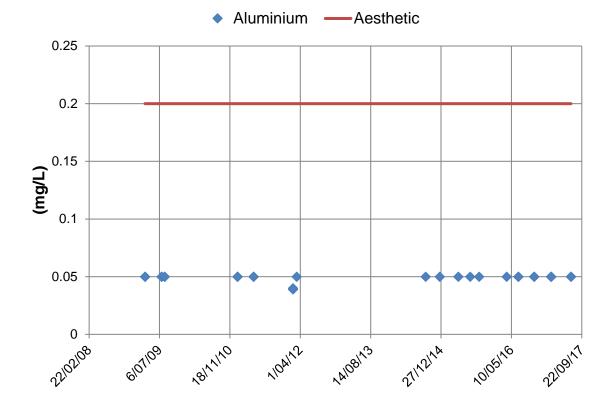



Figure 3.14 Quilpie - Zinc


Figure 3.16 Quilpie - Boron

Boron — Health

٠

Figure 3.15 Quilpie – Aluminium

3.1.1 (b) Interpretation

Table 3-1 above shows aesthetic guideline value exceedances¹ for pH and Sodium, and health guideline value exceedances for Fluoride in the reticulated water.

The following aesthetic characteristics were detected (highlighted show exceedances):

- pH
- Silica
- Total Dissolved Solids
- Total Hardness
- Colour
- Turbidity
- Sodium
- Chloride
- Aluminium

The following health characteristics were detected (highlighted shows exceedances):

• Fluoride

- Nitrate
- Boron

Figure 3.1 provides a trend for the analysis of pH; there are fifteen exceedances. A maximum value of 9.3, average value of 8.5 and a 95th percentile value of 8.6 have been determined. The aesthetic guideline value is $\geq 6.5 \& \leq 8.5$. For pH no health based guideline value is considered necessary.

Figure 3.7 provides a trend for the analysis of Sodium; there are twenty nine exceedances from 29 monitoring events. The aesthetic guideline value is 180 mg/l. For Sodium no health based guideline is considered necessary. A maximum value of 230 mg/l, average value of 207 mg/l and a 95th percentile of 230 mg/l have been determined. Sodium values >180 mg/l cause taste issues.

Figure 3.9 provides a trend for the analysis of Fluoride; there are thirty three exceedances from thirty five monitoring events. The health guideline value is 1.5 mg/l. A maximum value of 1.80 mg/l, average value of 1.7 mg/l and a 95th percentile of 1.9 mg/l have been determined. Fluoride values > 1.5 mg/l can cause dental fluorosis. All samples analysed measured > 1.5 mg/l.

Of all samples analysed for E. coli there have been zero E. coli colonies detected.

3.1.2 Catchment Characteristics

Quilpie is located in the Channel Country of South West Queensland and the local government area covers approximately 67,482 square kilometres. The main ranges in the Quilpie Shire are the Grey, McGregor and Willies Ranges. The Willies range forms the catchment boundary of the Quilpie and Paroo Rivers. The Grey Range separates the Cooper Creek catchment from the Bulloo River. The Bulloo River is the major drainage system in the shire, where the head of the catchment is in the Gowan Ranges north of Adavale. The Bulloo River also has a well-developed flood plain.

The average annual rainfall for Quilpie is 349.2mm with the majority of the rain falling between late November and late March[.] The mean maximum temperature is 29.2°C although temperatures have exceeded the 45°C mark during the summer months. Quilpie has a current

¹ As per the Australian Drinking Water Guidelines

population of 600 permanent residents and has a current demand of 1.20 Ml/day. Due to its geographical location the town of Quilpie does not flood.

Quilpie Shire economy is based on the grazing and mining industries. The region consists of one of the largest opal boulder deposits in the world along with extensive gas and oil deposits. Road infrastructure construction and maintenance also contribute significantly to provide a stable employment base for the area.

The Great Artesian Basin (GAB) covers approximately one-fifth of the Australian continent and contains 8.7 x 106 GL of groundwater in the Jurassic sandstone aquifers. It comprises the Eromanga, Surat and Carpentaria sedimentary basins and parts of the Bowen and Galilee Basins. The GAB is the largest groundwater and artesian basin in the world. The basin is located under mostly arid and semi-arid landscapes to the west of the Great Dividing Range. The GAB supports a wide array of activities such as pastoral, agriculture and mining as well as the rural communities, cultural and tourism activities. The GAB is recharged by rainfall and stream flow infiltrating into the exposed sandstone on the edges of the basin.

The Eromanga basin consists of a conformable, almost horizontal bedded sequence of Early Jurassic to Late Cretaceous sedimentary rocks. The sequence comprises continental quartz-rich sandstone, siltstone and mudstone units formed within a shallow marine setting during the Early Cretaceous. These rocks conformably overlie sandstone-dominated formations deposited in lacustrine and fluvial environments of the Late Cretaceous (Habermehl, 1980).

The most significant groundwater systems in the GAB occur in the Late Jurassic to Early Cretaceous aquifer sequence, collectively termed the Cadna-owie–Hooray Aquifer. The Cadna-owie–Hooray Aquifer extends across the entire GAB, although its thickness and hydraulic properties may vary. This important groundwater-bearing unit is a composite of several aquifers that hydraulically interconnect over basement highs, and merge in the western Eromanga Basin (Radke et al., 2000).

Currently there are two bores in Quilpie which both tap the Hooray Sandstone Aquifer, town Bore No 1 (RN 390) and Town Bore No 2 (RN 116266). Figure 3.17 shows the recharge, discharge and flow of the GAB. Town Bore No. 1 (back-up bore) is located on Chipu Street and Town Bore No. 2 is located on Gyrica Street. Bores 1 and 2 are 900m and 966m deep respectively. The bores currently yield 47 I/s and 19 I/s respectively. Both bores are free flowing with high pressures being adjusted by clay pressure valves. Bore 1 was drilled in 1933 and Bore No. 2 was drilled in 2009. All bore headworks are sealed against the possibility of deliberate contamination. Appendix B Figure GBA-2012-081 shows the bore locations and water reticulation layout on an aerial photo of the town. Appendix C contains a copy of the bore card reports obtained from Department of Natural Resources Mines and Energy.

Quilpie sewerage collection scheme is comprised of a sewage treatment plant consisting of an Imhoff tank, baffle type clarifier, three sludge drying beds and two oxidation lagoons. Effluent is discharged to Pinkilla Creek. The sewerage reticulation system has a total pipeline length of 9,555m. New sub-divisions constructed during the last ten years have PVC mains that are in good condition.

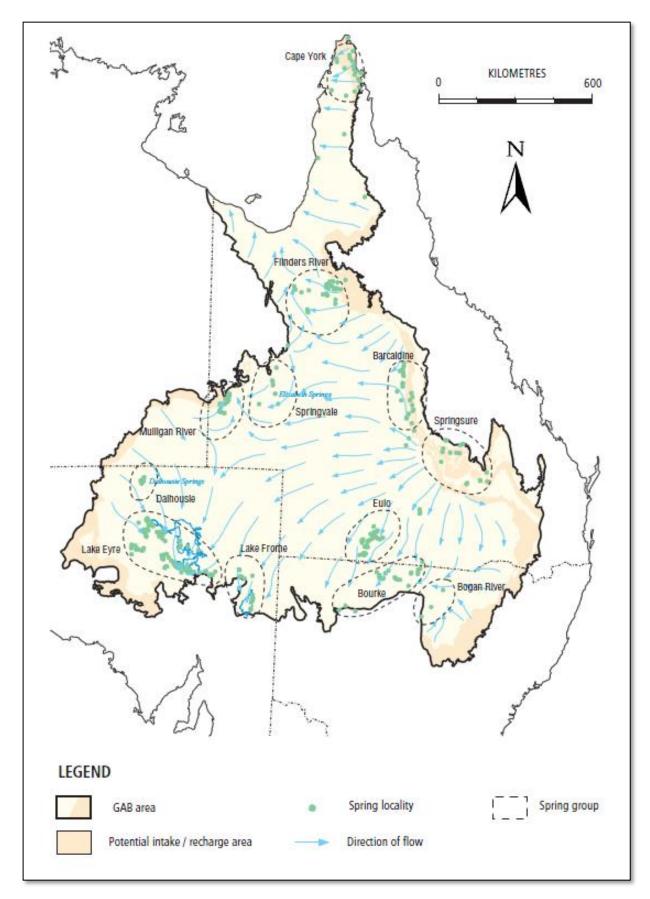


Figure 3.17 GAB Recharge, Discharge and Flow

3.1.3 Hazard Identification

The hazards and hazardous events and their sources that adversely affect water quality are documented in Table 3-2 below and include those affecting:

- Catchment
- Sourcing infrastructure
- Distribution system

3.1.4 Identifying and Documenting Hazards and Hazardous Events

The hazards and hazardous events were identified using data contained in the plan, a recent independent specialist review of the supply schemes and a risk assessment workshop which was conducted on the 7th of April 2020 with members of Council from the engineering, operations and administration departments along with GBA consultants. The following sections of the plan were critical in assessing the risks associated with the water supply schemes;

- Section 2.1 Quilpie Water Supply Scheme
- Section 3.1.1 Physical and Chemical Water Quality Information
- Section 3.1.2 Catchment Characteristics

Table 3-2 Quilpie Hazard Identification, Risk Assessment and Uncertainty

Scheme Component / Sub- component	Hazardous Event	Hazard	Maximum risk			Existing	Residual risk				Comments/
			Consequence	Likelihood	Risk level	Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Uncertainty	Proposed Further Risk Reduction Actions
Catchment	Sewage system discharges, agricultural run-off	Biological	Catastrophic	Rare	Medium 6	O & M Procedure Operational and verification monitoring Confined aquifer	Moderate	Rare	Low 3	Reliable	Acceptable Risk
	Hazard that arises from the natural geological processes in the aquifer.	Chemical	Moderate	Almost Certain	High 15	Fluoride Risk Facts Sheet	Moderate	Unlikely	Medium 6	Estimate	Fluoride awareness program in place informing community of potential health risks.
Sourcing Infrastructure	Bore Failure	Physical	Moderate	Unlikely	Medium 6	O & M Procedure/Regular Inspections Backup bore	Moderate	Rare	Low 3	Reliable	Q1. Construct new water supply bore
	Maintenance and repair of water main	Biological	Catastrophic	Possible	High 15	O & M Procedures	Catastrophic	Unlikely	High 10	Uncertain	Q2. Update O & M procedures to include safe practices for maintenance and repair of water mains Q3. Establish a temperature monitoring program for the reticulation system
	Accidental or intentional contamination	Chemical/Biological	Catastrophic	Rare	Medium 6	Chain-link fencing and locked gates around bores O & M Procedures	Moderate	Rare	Low 3	Reliable	Acceptable Risk
	Flood Event	Physical	Catastrophic	Rare	Medium 6	Town does not flood. Sealed bore headworks O & M Procedures	Moderate	Rare	Low 3	Uncertain	
Treatment Plant	Reticulated Water Untreated										
Disinfection Process	Reticulated Water Not Disinfected (Sealed artesian hot water system)										
Distribution System	Accidental or intentional contamination	Biological/ Chemical	Catastrophic	Possible	High 15	O&M Procedures	Catastrophic	Rare	Medium 6	Confident	Q3. Establish a temperature monitoring program for the reticulation system Q4. Reduce contamination risks at standpipe locations. Install backflow prevention protection and improved hose storage system.

Scheme			Max	kimum risk		Existing	Res	sidual risk			Comments/
Component / Sub- component	Hazardous Event	Hazard	Consequence	Likelihood	Risk level	Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Uncertainty	Proposed Further Risk Reduction Actions
	Reticulation maintenance and repair	biological	Catastrophic	Possible	High 15	O & M Procedures	Catastrophic	Unlikely	High 10	Confident	Q2. Update O & M procedures to include safe practices for maintenance and repair of water mains
	Flights carrying water samples to be analysed are delayed/cancelled	Chemical/Biological	Minor	Possible	Medium 6	Collect new samples and schedule testing for next available flight O & M Procedures	Minor	Rare	Low 2	Confident	Acceptable Risk
	Poor information management	Chemical/Biological	Catastrophic	Possible	High 15	Water quality data analysis and management, routine operations and maintenance of scheme	Moderate	Unlikely	Medium 6	Uncertain	Q2. Procedures to be developed and reviewed. Q5. Monitoring data and documentation consolidated and managed centrally
	Contamination of water samples	Chemical/Biological	Major	Possible	High 12	O & M procedures	Major	Unlikely	Medium 8	Reliable	Q6. Upgrade water testing facilities. Provide dedicated testing facility to ensure hygienic conditions for water testing
Whole of System	Lack of human resources	Chemical/Biological/ Physical	Major	Likely	High 16	O & M procedures Knowledge succession	Major	Possible	High 12	Uncertain	Q2. Update O & M procedures to include safe practices for maintenance and repair of water mains
	Bush Fire	Physical	Major	Possible	High 12	Infrastructure management – fuel reduction Emergency services response unit Council disaster management preparedness	Major	Rare	Medium 5	Confident	Acceptable Risk
	Cyber security breach	Physical	Moderate	Possible	Medium 9	High grade security protection User authentication Restricted administration privileges Malware protection Anti-virus protection Sonic wall protection	Moderate	Rare	Low 3	Reliable	Acceptable Risk

3.1.5 Hazard Identification (and Risk Assessment) Team

The personnel responsible for the hazard identification and risk assessment process, their roles and responsibilities are detailed in Table 3-3 below.

Typical Job Title for Key Personnel	What Role Did Each Person Play on The Team?	What Expertise and System Knowledge Did The Person Bring?
Engineer	Management of DWQMP Process, Risk Assessment Procedure & Chairing Risk Assessment Workshop	High level knowledge of supply schemes, risk assessment and general engineering experience in the management of the systems
		Knowledge of Regulatory requirement and responsibilities under the Act
Water Officer	Risk Assessment Workshop	Detailed knowledge of individual schemes, risk assessment
Environmental Scientist (Consultant)	Risk Assessment Workshop	Knowledge of Regulatory requirement and responsibilities under the Act

 Table 3-3 Hazard Identification and Risk Assessment Team

3.2 Eromanga Water Quality and Catchment Characteristics

In 2014 Eromanga's water supply system underwent significant changes, including the implementation of an alternate water source and the installation of a reverse osmosis water treatment plant. Eromanga's water supply source was converted from artesian water supply to four shallow sub-artesian bores this decision was made due to the overall superior water quality of the sub artesian water. A water treatment plant was implemented and water storage tanks were also installed as part of the water supply upgrade, the treatment system installed included a reverse osmosis filtration system with a capacity of 2l/second, an automated chlorine dosing system, raw water and treated water storage tanks and a pump systems to distribute clean water throughout the distribution system.

3.2.1 **Physical and Chemical Water Quality Information**

Water quality information for Eromanga includes the following:

- a) Summary
- b) Interpretation

3.2.1 (a) Summary

Recent water testing, since the commissioning of the water treatment plant of the Eromanga water supply have indicated that the water quality of the distribution system is generally of a high standard.

Table 3.5 and 3.6 below summarises the available water quality for reticulated and raw water respectfully, post system upgrade. Aesthetic guideline exceedances are highlighted amber and health guideline value exceedances are highlighted red.

Table 3-4 Eromanga Reticulated Water

Eromanga Water Supply Water Supply		Start Date	09/09/2014		End Date:	21/08/2019					
•• <i>•</i>		No. of		S	ummary of Re	sults				Guideline V	alue
Characteristic	Units	No. of Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedance
Conductivity	uS/cm	27	2230.00	650.19	318.00	491.00	1842.90				
-11		27	7.02	7.26	<i>c.c.</i>	0.22	7 05			≥6.5 & ≤	
pH	mg/L as	27	7.93	7.36	6.66	0.33	7.85			8.5	
Total Hardness	CaCO3	27	340.00	73.15	20.00	78.86	266.70			200	
Temporary Hardness	mg/L as CaCo ₃	27	137.00	44.85	20.00	27.88	112.30			200	
Alkalinity	mg/L CaCo ₃	27	137.00	45.78	21.00	27.52	112.30				
Residual Alkalinity	meg/L	27	0.10	0.02	0.00	0.04	0.10				
Silica	mg/L	27	78.00	26.59	11.00	16.26	65.00			80	
Total Dissolved Ions	mg/L	27	1320.00	362.48	176.00	290.47	1073.30				
Total Dissolved Solids	mg/L	27	1310.00	361.04	174.00	290.31	1073.60			600	
True Colour	Hazen	27	4.00	0.94	0.50	0.90	3.10			15	
Turbidity	NTU	27	30.00	2.26	0.50	5.59	5.80			5	
Sodium Absorption Ratio		27	7.90	5.08	2.90	1.28	7.35				
Sodium	mg/L	27	330.00	97.78	22.00	74.03	276.00			180	
Potassium	mg/L	27	4.60	1.40	0.60	0.99	3.75				
Calcium	mg/L	27	78.00	17.85	4.90	17.27	59.00				
Magnesium	mg/L	27	37.00	6.99	1.50	8.91	28.80				
Hydrogen	mg/L	27	0.00	0.00	0.00	0.00	0.00				
Bicarbonate	mg/L	27	166.00	55.63	25.00	33.36	136.20				
Carbonate	mg/L	27	0.90	0.14	0.00	0.21	0.58				
Hydroxide	mg/L	27	0.00	0.00	0.00	0.00	0.00				
Chloride	mg/L	27	480.00	140.11	59.00	110.70	405.00			250	
Fluoride	mg/L	27	0.36	0.12	0.03	0.08	0.30	1.5	0		
Nitrate	mg/L	27	16.00	7.50	3.80	3.24	14.50	50	0		
Sulphate	mg/L	27	210.00	33.38	4.00	51.03	159.60	500	0	250	
Iron	mg/L	26	0.070	0.019	0.010	0.014	0.038			0.3	
Manganese	mg/L	26	0.020	0.010	0.010	0.002	0.010	0.5	0	0.1	
Zinc	mg/L	27	1.500	0.107	0.010	0.302	0.521			3	
Aluminium	mg/L	27	0.05	0.05	0.05	0.00	0.05			0.2	
Boron	mg/L	27	0.25	0.21	0.18	0.02	0.24	4	0		
Copper	mg/L	26	0.25	0.04	0.03	0.04	0.04	2	0	1	
Aesthetic Guideline Exceedance	Health Guideline Exceedance										

Table 3-5 Eromanga Raw Water

Eromanga Raw Water Supply		Start Date	15/03/201 7		End Date:	14/05/20)19				
		No. of		Sum	mary of Resu	ılts			Guideli	ne Value	
Characteristic	Units	No. of Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedanc es
Conductivity	uS/cm	12	5160.00	2475.83	1260.00	960.55	3977.50				
рН		12	7.58	7.45	7.26	0.10	7.57			≥6.5 & ≤ 8.5	0
Total Hardness	mg/L as CaCO3	12	1100.00	416.08	138.00	227.48	751.85			200	11
Temporary Hardness	mg/L as CaCo ₃	12	141.00	114.00	59.00	24.13	136.60			200	0
Alkalinity	mg/L CaCo₃	12	141.00	114.00	59.00	24.13	136.60				
Residual Alkalinity	meq/L	12	0.00	0.00	0.00	0.00	0.00				
Silica	mg/L	12	88.00	76.83	71.00	5.81	86.90			80	3
Total Dissolved Ions	mg/L	12	2950.00	1453.42	745.00	544.73	2306.50				
Total Dissolved Solids	mg/L	12	2970.00	1459.50	792.00	543.92	2315.50			600	12
True Colour	Hazen	12	4.00	0.49	0.05	1.08	2.08			15	0
Turbidity	NTU	12	2.00	0.29	0.05	0.58	1.45			5	0
Sodium Absorption Ratio		12	9.10	7.60	6.20	1.03	9.10				
Sodium	mg/L	12	640.00	350.83	200.00	118.07	535.50			180	12
Potassium	mg/L	12	9.20	4.87	0.20	1.99	7.55				
Calcium	mg/L	12	230.00	89.50	32.00	46.96	158.50				
Magnesium	mg/L	12	130.00	46.92	14.00	27.39	87.10				
Hydrogen	mg/L	12	0.00	0.00	0.00	0.00	0.00				
Bicarbonate	mg/L	12	171.00	138.67	72.00	29.36	166.05				
Carbonate	mg/L	12	0.50	0.32	0.10	0.13	0.50				
Hydroxide	mg/L	12	0.00	0.00	0.00	0.00	0.00				
Chloride	mg/L	12	1300.00	558.33	180.00	274.25	981.00			250	11
Fluoride	mg/L	11	0.46	0.36	0.25	0.05	0.44	1.5	0		
Nitrate	mg/L	12	24.00	16.75	6.40	5.62	23.45	50	0		
Sulphate	mg/L	12	520.00	247.50	180.00	89.17	393.50	500	1	250	4
Iron	mg/L	12	0.010	0.010	0.010	0.000	0.010			0.3	0
Manganese	mg/L	12	0.100	0.018	0.010	0.025	0.056	0.5	0	0.1	0
Zinc	mg/L	12	0.900	0.091	0.010	0.244	0.438			3	0
Aluminium	mg/L	12	0.050	0.050	0.050	0.000	0.050			0.2	0
Boron	mg/L	12	0.280	0.251	0.200	0.028	0.280	4	0		
Copper	mg/L	12	0.040	0.031	0.030	0.003	0.035	2	0	1	0

Aesthetic Guideline Exceedance	
Health Guideline Exceedance	

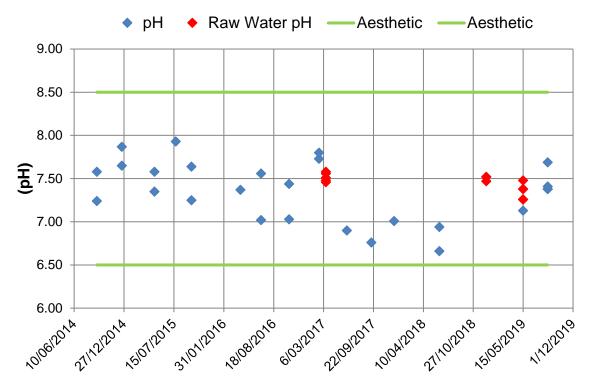
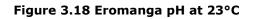



Figure 3.18 to Figure 3.31 below shows trends for the water characteristics contained in Table 3.5 and 3.6

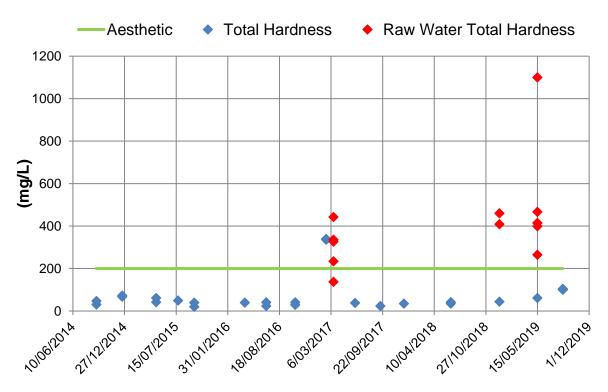
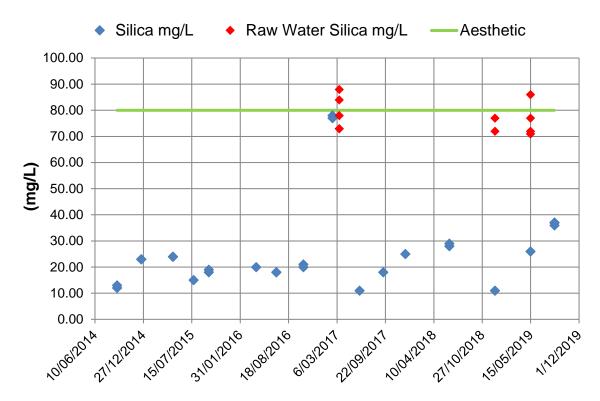



Figure 3.19 Eromanga Total Hardness

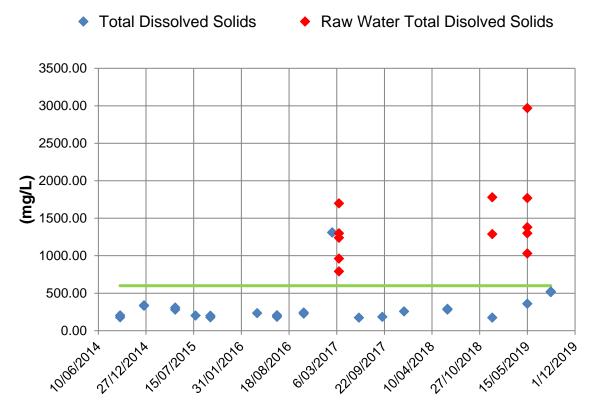
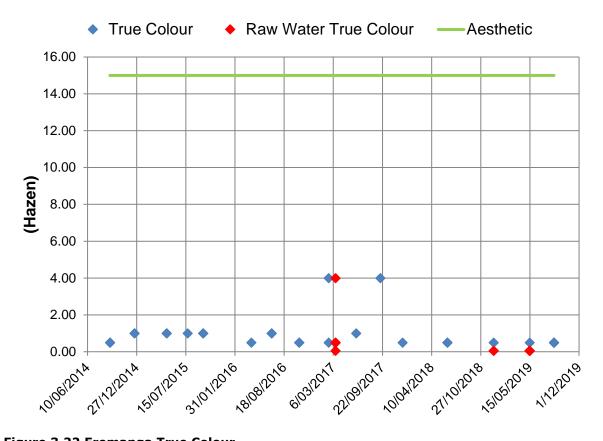



Figure 3.21 Eromanga Total Dissolved Solids

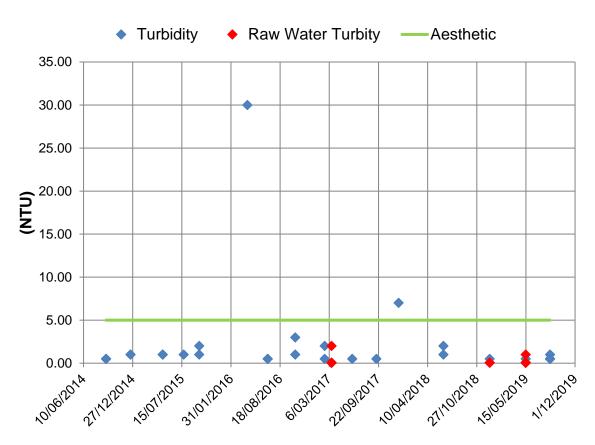
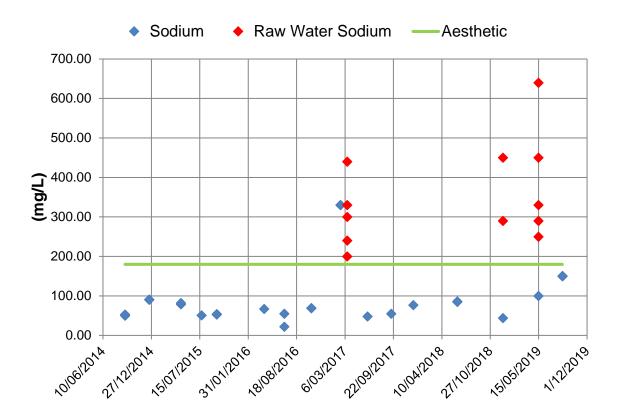



Figure 3.23 Eromanga Turbidity

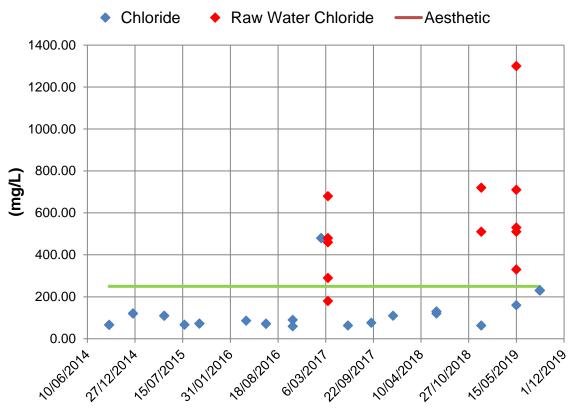
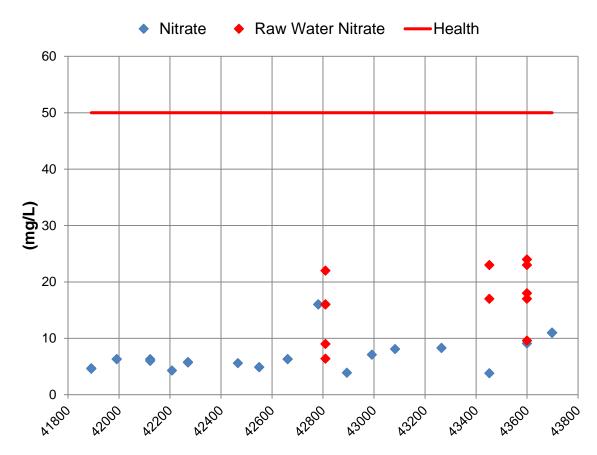



Figure 3.25 Eromanga Chloride

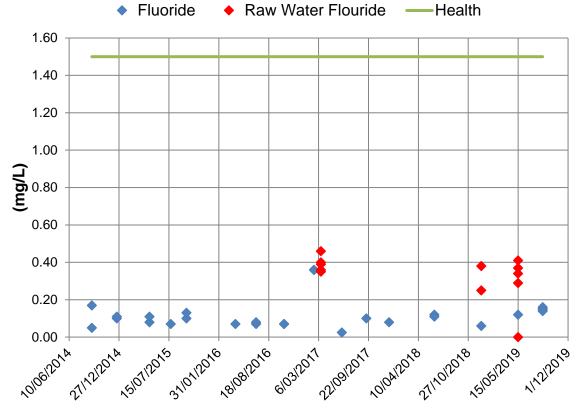


Figure 3.26 Eromanga Fluoride

Fluoride

Figure 3.29 Eromanga Iron

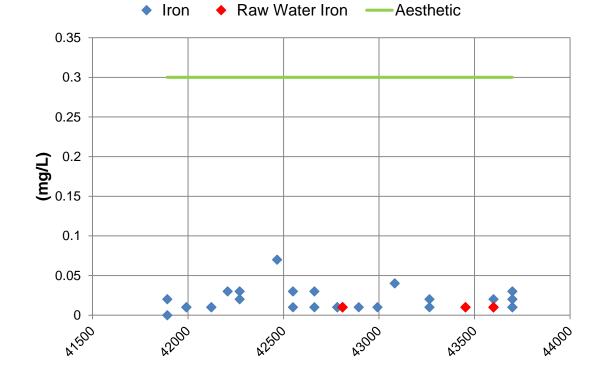
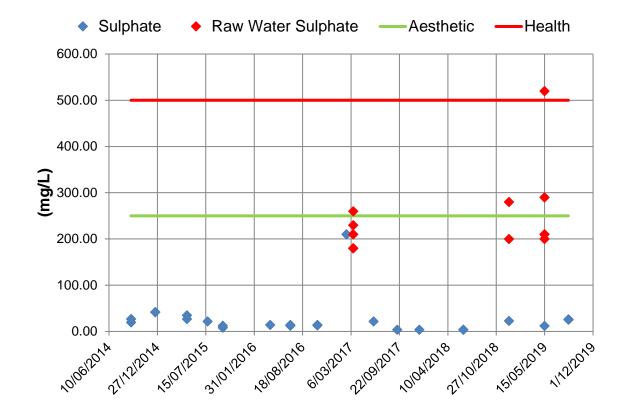



Figure 3.28 Eromanga Sulphate

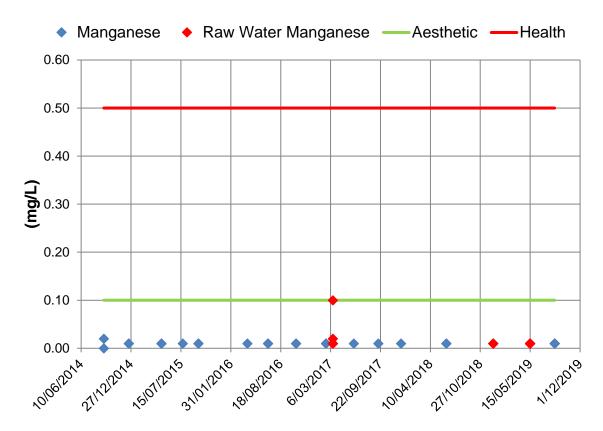


Figure 3.30 Eromanga Manganese

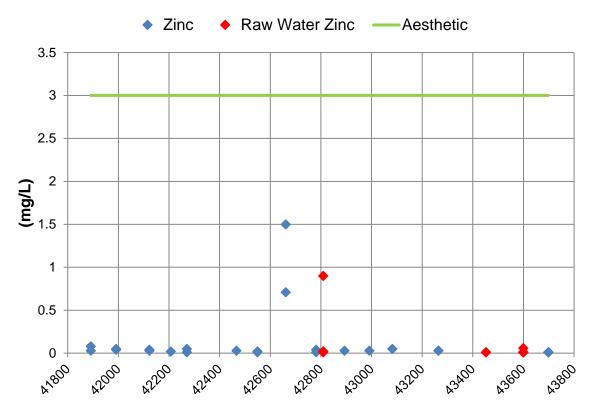
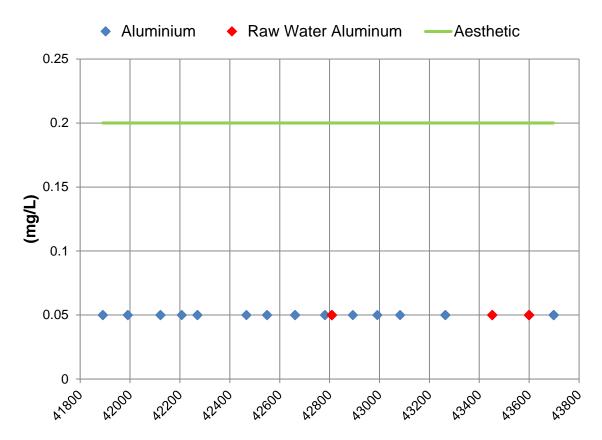



Figure 3.31 Eromanga Zinc

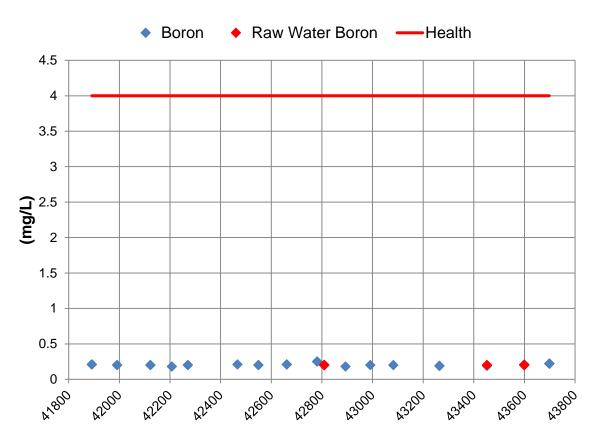


Figure 3.33 Eromanga Boron

3.2.1 (b) Interpretation

Table 3.5 provides a summary of water quality data sampled from the distribution system since the commissioning of the water treatment plant. This data identifies aesthetic guideline value exceedances² for a number of analytes, and no health guideline value exceedances detected in the distribution system.

The following aesthetic characteristics were detected (Bold items show exceedances):

- pH
- Silica
- Total Dissolved Solids
- Total Hardness
- Colour
- Turbidity
- Sodium
- Chloride
- Aluminium

Figure 3.19 provides a trend for the analysis of Total Hardness; there are 2 exceedances. A maximum value of 340 mg/l, average value of 73 mg/l and a 95th percentile value of 267 mg/l have been determined. The aesthetic guideline value is 200 mg/l for Total Hardness no health-based guideline value is considered necessary Total Hardness above 200 mg/l may lead to the scaling of pipes.

Figure 3.21 provides a trend for the analysis of Total Dissolved Solids; there are two exceedances. The aesthetic guideline value is 600 mg/l. For Total Dissolved Solids no health-based guideline is considered necessary. A maximum value of 1310 mg/l, average value of 361 mg/l and a 95th percentile of 1074 mg/l have been determined for this parameter. High Total Dissolved Solids values are associated with reduced palatability and increased scaling in pipes.

Figure 3.23 provides a trend for the analysis of Turbidity; there are two exceedances. The aesthetic guideline value is 5 NTU. For Turbidity no health-based guideline is considered necessary. A maximum value of 30 NTU, average value of 2.26 NTU and a 95th percentile of 5.8 NTU have been determined. High Turbidity values can be associated with an increased risk of pathogens in water supplies.

Figure 3.24 provides a trend for the analysis of Sodium; there are two exceedances. The aesthetic guideline value is 180 mg/l. For Sodium no health-based guideline is considered necessary. A maximum value of 330 mg/l, average value of 97.8 mg/l and a 95th percentile of 276 mg/l have been determined. Sodium values >180 mg/l cause taste issues.

Figure 3.21 provides a trend for the analysis of Chloride; there are two exceedances. The aesthetic guideline value is 250 mg/l. For Chloride no health-based guideline is considered necessary. A maximum value of 480 mg/l, average value of 140 mg/l and a 95th percentile of 405 mg/l have been determined. Relatively high Chloride values identified Eromanga's water supply area associated with the dissolution of minerals from the underlying geology of the groundwater system.

The ADWG Aesthetic threshold exceedances identified above are associated with RO treatment plant bypass in early 2017, due to scaling of membrane filters in the RO plant, where the RO process was bypassed for a short period whilst specialist maintenance was completed. The

² As per the Australian Drinking Water Guidelines (2011)

scaling of membrane filters has been identified as a risk factor in section 3.7 below and also discussed as an improvement item in Section 5.

3.2.2 Catchment Characteristics

Eromanga is located in the Channel Country of South West Queensland. The main ranges in the Quilpie Shire are the Grey, McGregor and Willies Ranges. The Willies range forms the catchment boundary of the Quilpie and Paroo Rivers. The Grey Range separates the Cooper Creek catchment from the Bulloo River. The Bulloo River is the major drainage system in the shire, where the head of the catchment is in the Gowan Ranges north of Adavale. The Bulloo River also has a well-developed flood plain.

Eromanga is subject to flooding on rare occasions, and is identified as a level 1 flood hazard area in the QLD Governments Flood Plain Assessment Database. Eromanga's location is situated between two small watercourses in the upper reaches of the Kyabra Creek which flows into Cooper Creek approximately 150km to the north. Flooding in Eromanga is largely due to the low relief values associated with the Channel Country, where large rainfall events cause widespread inundation across the landscape. Local records indicate that high flood events cause flood waters to rise to approximately one meter reaching the periphery of the town.

The average annual rainfall for Eromanga is 349.2mm³ with the majority of the rain falling between late November and late March. The mean maximum temperature is 29.2°C although temperatures have exceeded the 45°C mark during the summer months. Eromanga has a current population of 50 permanent residents and has a current demand of .104 Ml/day. Outdoor watering of treated water is discouraged in Eromanga to ensure the capacity of the RO plant is not exceeded.

Eromanga's economy is based on the grazing and mining industries. The region consists of one of the largest opal boulder deposits in the world along with extensive gas and oil deposits. Road infrastructure construction and maintenance also contribute significantly to provide a stable employment base for the area.

In 2014 Eromanga switched their source water supply from the deep artesian water bore to subartesian with the establishment of a water treatment facility in Eromanga. The sub artesian supply was chosen due to the improved water quality. The source water supply comes from four shallow sub artesian bores, approximately forty metres depth with a positive pressure of approximately ten metres. The source water bores in Eromanga have targeted the Winton formation which forms the uppermost sequence in the Great Artesian Basin, dating back to the Cretaceous between 98-95 million years old. According to bore logs in the vicinity, the Winton formation can be accessed at relatively shallow depths of approximately 20m, this aquifer is overlayed with quaternary sediments and as such is described as an unconfined aquifer.

Quilpie Shire Council have maintained the deep artesian water supply that was used as the scheme's water supply prior to the commissioning of the water treatment plant. The bore operates continually and supplies water to a cooling pond for use in road construction, watering of animals on the town common and to supply wash down water for the IOR Oil Refinery. This bore can be used for emergency situations where the treatment plant is not working.

In the event that the water treatment plant is not operational the first option will be to truck water in from Quilpie and pump the water into the clean water tank for distribution. In situations where water cannot be delivered from Quilpie as would be the case if the road was closed by flooding, as a last resort the water treatment plant will be bypassed and the deep artesian supply

³ Climate statistics for Quilpie Airport (nearest available climate statistics) – Bureau of Meteorology

fed directly into the mains supply. The water quality of the artesian bore water is non-potable. When this water is supplied to the customer's, Council will issue notices the residents of Eromanga. This will be done by council staff delivering the information in person to individual houses and where personal contact cannot be made a notice dropped off at the house.

Eromanga sewerage system is a common effluent drainage scheme constructed in 2001 which contains a biological effluent treatment system comprising oxidation lagoons and an artificial wetland, one effluent pumping station, one rising main and 2600m of reticulation mains.

3.2.3 Hazard Identification

The hazards and hazardous events and their sources that adversely affect water quality are documented in Table 3-6 below and include those affecting:

- Catchment
- Sourcing infrastructure
- Distribution system

3.2.4 **Identifying and Documenting Hazards and Hazardous Events**

The hazards and hazardous events were identified using data contained in the plan and following a risk assessment workshop;

Scheme Component	Hazardous		Max	kimum risk		Existing Preventive	R	esidual risk			Comments/ Proposed	
/ Sub- component	Event	Hazard	Consequenc e	Likelihoo d	Risk level	Measures / Barriers.	Consequenc e	Likelihood	Risk level	Uncertainty	Further Risk Reduction Actions	
	Sewage system discharges, agricultural run- off	Biological	Catastrophic	Unlikely	High 10	Disinfection UV treatment Operational and verification monitoring	Moderate	Unlikely	Medium 6	Reliable	E1. Undertake bore water quality investigation to assess risk of water pathogens in sub artesian system.	
Catchment	Hazard that arises from the natural geological processes in the aquifer.	Chemical	Major	Likely	High 16	Water treatment in place Boil water alert	Major	Unlikely	Medium 8	Reliable	Acceptable risk	
	Draw down of water table	Physical	Moderate	Possible	Medium 9	Reliance on multiple bores/Continuous monitoring of water depth	Moderate	Rare	Low 3	Reliable	Ongoing monitoring of water level. Alternate supply if necessary	
	Bore Contamination	Biological	Catastrophic	Possible	High 15	Sealed bore headworks Treatment of shallow bore water Monitoring bore integrity Multiple source water bores and ability to isolate if required	Major	Unlikely	Medium 6	Reliable	E1. Undertake bore water quality investigation to assess risk of water pathogens in sub artesian system.	
Sourcing Infrastructur e	Bore Failure	Physical	Moderate	Unlikely	Medium 6	O & M Procedure/Regula r Inspections Truck water in from Quilpie Alternate bore availability Multiple source water bores and ability to isolate if required	Moderate	Rare	Low 3	Reliable	Acceptable risk	
	Maintenance and repair of water main	Biological	Catastrophic	Possible	High 15	O&M Procedures in place	Catastrophic	Unlikely	High 10	Uncertain	E2. Update O & M Procedures to include safe practices for maintenance and repair of water mains	
	Accidental or intentional contamination	Biological/Chemica I	Catastrophic	Rare	Medium 6	Chain-link fencing and locked gates Sealed bore headworks	Moderate	Rare	Low 3	Reliable	E1. Undertake bore water quality investigation to assess risk of water pathogens in sub artesian system.	

 Table 3-6 Eromanga Hazard Identification, Risk Assessment and Uncertainty

Scheme Component	Hazardous		Max	kimum risk		Existing Preventive	R	esidual risk		
/ Sub- component	Event	Hazard	Consequenc e	Likelihoo d	Risk level	Measures / Barriers.	Consequenc e	Likelihood	Risk level	Un
						O&M Procedures in place				
	Flood Event	physical	Catastrophic	Rare	Medium 6	Rarity of flood events Sealed bore headworks Bores located out of flood zone	Moderate	Rare	Low 3	F
	Power outage	Physical	Moderate	Unlikely	Medium 6	Backup generator	Minor	Rare	Low 2	C
	Equipment failure	Physical/Chemical	Catastrophic	Possible	High 15	Central control system capabilities Correct maintenance practices Automated tank level of 90% O&M Procedures in place Alternate water source, transport water in from Quilpie	Catastrophic	Unlikely	High 10	U
Treatment Plant	Long term Power failure	Physical	Major	Possible	High 12	Backup generator in place for power outages If the Plant becomes inoperable, potable water will be trucked from the approved Quilpie water supply using suitable road tankers. Only if flooding closes the road between Quilpie and Eromanga, consideration will be given to use the artesian bore in Eromanga	Moderate	Rare	Low 3	F

Jncertainty	Comments/ Proposed Further Risk Reduction Actions
Reliable	
Confident	Acceptable Risk
Uncertain	E 3. Engage water treatment specialist/s to undertake system review, Undertake critical maintenance, & develop detailed and succinct Plant Operational and Maintenance Procedures.
Reliable	Generator maintenance

Scheme Component / Sub- component	Hazardous		Max	kimum risk		Existing Preventive	R	esidual risk		
/ Sub-	Event	Hazard	Consequenc e	Likelihoo d	Risk level	Measures / Barriers.	Consequenc e	Likelihood	Risk level	Unce
	Bypass treatment plant	Chemical (Fluoride)	Moderate	Unlikely	High 15	Continual public awareness Alternate water source, transport water in from Quilpie Operational monitoring	Moderate	Rare	Medium 8	Con
		Biological	Catastrophic	Unlikely	High 10	O&M Procedures in place	Moderate	Rare	Low 3	Con
	Head loss build up to media filters and RO membranes	Physical/Chemical	Catastrophic	Possible	High 15	Disinfection	Major	Unlikely	Medium 8	Con
Disinfection Process (Sodium Hypochlorite)	Overdosing of chlorine leading to high levels of disinfection by products	Chemical	Moderate	Unlikely	Medium 6	Operational monitoring Verification monitoring Ultra Violet Light Disinfection	Minor	Unlikely	Low 4	Con
	Under dosing of chlorine leading to chlorine sensitive pathogen survival in finished water	Biological	Catastrophic	Unlikely	High 10	RO Microfiltration UV treatment O&M Procedures in place	Minor	Unlikely	Low 4	Con
	Chlorine Storage conditions, chemical degradation and gassing	Biological/Chemica l	Catastrophic	Possible	High 15	Operational Monitoring Verification Monitoring	Major	Unlikely	Medium 8	Unc
	Failure of disinfectant dosing pumps	Biological	Catastrophic	Unlikely	High 10	Weekly chlorine testing Standby pump Ultra Violet Light Disinfection RO Microfiltration O&M Procedures in place	Minor	Unlikely	Low 4	Con
	Power outage	Physical	Moderate	Unlikely	Medium 6	Backup generator	Minor	Rare	Low 2	Con

Incertainty	Comments/ Proposed Further Risk Reduction Actions
Confident	Acceptable Risk
Confident	
Confident	E4. Trend pre and post pressures of media and RO pressure gauges to ascertain safe operating parameters.
Confident	Acceptable Risk
Confident	Acceptable Risk
Uncertain	E.5 Investigate and modify chlorine storage system to avoid chemical degradation and gassing
Confident	Acceptable Risk
Confident	Acceptable Risk

Scheme Component	Hazardous		Max	kimum risk		Existing Preventive	R	esidual risk			Comments/ Proposed
/ Sub- component	Event	Hazard	Consequenc e	Likelihoo d	Risk level	Measures / Barriers.	Consequenc e	Likelihood	Risk level	Uncertainty	Further Risk Reduction Actions
	Accidental or intentional contamination	Biological/ Chemical	Catastrophic	Possible	High 15	O&M Procedures	Catastrophic	Unlikely	High 10	Confident	E6.Caravan septic disposal point in the vicinity of Town hall bore to be concreted and bunded.
Distribution System	Reticulation maintenance and repair	Bacteria	Catastrophic	Possible	High 15	O & M Procedures in place	Catastrophic	Unlikely	High 10	Uncertain	E2.Update O & M Procedures to include safe practices for maintenance and repair of water mains
	Clean water tank	Biological	Catastrophic	Possible	High 15	Vermin Proofing	Minor	Unlikely	Low 4	Confident	Regular checks and maintenance
	Unauthorised connections/ Backflow events	Biological	Catastrophic	Unlikely	High 10	Operational Monitoring Monitoring water usage	Moderate	Rare	Low 3	Confident	Acceptable Risk
	Flights carrying water samples to be analysed delayed/cancelle d	Logistics	Minor	Possible	Medium 6	Collect new samples and schedule testing for next available flight O & M Procedures in place	Minor	Rare	Low 2	Confident	Acceptable Risk
Whole of System	Poor information management	Chemical/ Biological	Catastrophic	Possible	High 15	Water quality data analysis and management, routine operations and maintenance of scheme	Moderate	Unlikely	Medium 6	Uncertain	E2. Procedures to be developed and reviewed E7. Monitoring data and documentation consolidated and managed centrally
	Contamination of water samples	Chemical/ Biological	Major	Possible	High 12	O & M procedures	Major	Unlikely	Medium 8	Reliable	E8. Upgrade water testing facilities in Quilpie. Provide dedicated testing lab to ensure hygienic conditions for water testing
	Lack of human resources	Chemical/ Biological/Physical	Major	Likely	High 16	O & M procedures Knowledge succession	Major	Possible	High 12	Uncertain	E3. Engage water treatment specialist/s develop detailed and succinct Plant Operational and Maintenance Procedures
	Bush Fire	Physical	Major	Possible	High 12	Infrastructure management – fuel reduction	Major	Rare	Medium 5	Confident	Acceptable Risk

Scheme Component	Hazardous		Маз	kimum risk		Existing Preventive	Re	esidual risk			Comments/ Proposed
/ Sub- component	Event	Hazard	Consequenc e	Likelihoo d	Risk level	Measures / Barriers.	Consequenc e	Likelihood	Risk level	Uncertainty	Further Risk Reduction Actions
						Emergency services response unit Council disaster management preparedness					
	Cyber security vulnerability	Physical	Major	Possible	High 12	High grade security protection User authentication Restricted administration privileges Malware protection Anti-virus protection Sonic wall protection Restricted telemetry usage licence password secured access to telemetry data	Moderate	Rare	Low 3	Reliable	Acceptable Risk

4 ASSESSMENT OF RISKS

The plan details the risk assessment methodology used for the scheme in Section 4.1 below. Section 4.2 explains how the risks were assessed. Section 4.3 tabulates the relevant stakeholders in the risk assessment process.

4.1 Methodology

The methodology adopted for the risk assessment is described below. The methodology is based on the methodology exampled in the document "Preparing a Drinking Water Quality Management Plan Guideline Supporting Information" (September 2010).

Table 4-1 below shows the qualitative measures of likelihood that was adopted in the risk assessment.

Likelihood	Descriptors		
Rare	Occurs less than or equal to once every 5 years		
Unlikely	Occurs more often than once every 5 years and up to once per year		
Possible	Occurs more often than once per year and up to once a month (12/yr.)		
Likely	Occurs more often than once per month (12/yr.) and up to once per week (52/yr.)		
Almost Certain	Occurs more often than once per week (52/yr.)		

Table 4-1 Measures of Likelihood Utilised in the Risk Assessment

Table 4-2 below shows the qualitative measures of consequence that was adopted in the risk assessment.

Table 4-2 Measures of Consequences Utilised in the Risk Assessment

Consequence	Descriptors		
Insignificant	Isolated exceedance of aesthetic parameter with little or no disruption to normal operation		
Minor	tential local aesthetic, isolated exceedance of chronic health parameter		
Moderate	Potential widespread aesthetic impact or repeated breach of chronic health parameter		
Major	Potential acute health impact, no declared outbreak expected		
Catastrophic	Potential acute health impact, declared outbreak expected		

Table 4-3 below shows the degrees of uncertainty adopted for the risk assessment. Some of the risks assessed for the Water Supply Schemes remain an estimate or uncertain.

Table 4-3 Degrees of Uncertainty

Level of Uncertainty	Definition
Certain	There is 5 years of continuous monitoring data, which has been trended and assessed, with at least daily monitoring; or The processes involved are thoroughly understood.

Level of Uncertainty	Definition
Confident	There is 5 years of continuous monitoring data, which has been collated and assessed, with at least weekly monitoring or for the duration of seasonal events; or There is a good understanding of the processes involved.
Reliable	There is at least a year of continuous monitoring data available, which has been assessed; or There is reasonable understanding of the processes involved.
Estimate	There is limited monitoring data available; or There is limited understanding of the processes involved.
Uncertain	There is limited or no monitoring data available; or The processes are not well understood.

Table 4.4 below shows the risk analysis matrix utilised, detailing the various levels of risk that was adopted in the risk assessment.

Likelihood	Consequence				
Likeimood	Insignificant	Minor	Moderate	Major	Catastrophic
Almost certain	Medium	High	High	Extreme	Extreme
	(6)	(10)	(15)	(20)	(25)
Likely	Medium	Medium	High	High	Extreme
	(5)	(8)	(12)	(16)	(20)
Possible	Low	Medium	Medium	High	High
	(3)	(6)	(9)	(12)	(15)
Unlikely	Low	Low	Medium	Medium	High
	(2)	(4)	(6)	(8)	(10)
Rare	Low	Low	Low	Medium	Medium
	(1)	(2)	(3)	(5)	(6)

Table 4-4 Risk Analysis Matrix - Level of Risk

Table 4-5 Defined Acceptable Risk Levels

Low risk	acceptable	manage for continuous improvement
Moderate risk	unacceptable	Implement short term measures, longer term risk reduction measures may be implemented within a reasonable timeframe
High risk	unacceptable	Implement short term measures immediately, longer term risk reduction measures need to be a priority
Extreme	unacceptable	Implement short term measures immediately, implementation of longer term risk reduction measures given top priority

Table 4-5 above details the acceptable risk levels for the water supply schemes.

4.1.1 Site Visits, Interviews and Risk Assessment Workshop

As a continual improvement strategy of Quilpie Shire Council an independent review of the towns' water supply schemes by an independent specialist. This review provided council with a number of improvement items which have been incorporated in to the DWQMP.

A DWQMP review and risk assessment teleconference (due to COVID-19 restrictions) was held in April 2020, members present at the meeting included Lalirra Lander – Administration Officer, Alan McNall - Water Officer, Peter See – Director of Engineering, William Green - George Bourne and Associates. The meeting was held as part of the DWQMP review and amendment process, suggested actions provided in Councils independent review were discussed in detail along with other perceives risks in the system.

4.2 Assessment of Risk

Details of the risk assessment results for each scheme's identified hazards and hazardous events include:

- maximum risk level or equivalent process (i.e. without existing barriers in place, e.g.: no treatment and/or disinfection);
- existing preventive measures including multiple barriers
- residual risk level (i.e. with existing barriers in place); and
- any uncertainties.

The following sections will discuss each of these dot points in further detail.

4.2.1 Assessment of Maximum Risk

For all hazards, maximum risk (e.g. the risk from an uncontrolled hazard) was first assessed. Where there was insufficient data or information to complete a reliable assessment, this was highlighted as an uncertainty and discussed further in the Risk Management Improvement Program in Section 5.3 below.

4.2.2 **Existing Preventative Measures/Barriers**

All existing preventative measures are listed in the Risk Assessment. Existing preventative measures include all actions, barriers or measures currently in place to reduce the maximum risk. They include all treatment steps, active measures that protect raw water quality prior to treatment and measures to protect treated water quality.

4.2.3 Residual Risk

The residual risk is determined once existing preventive measures have been applied. Residual risk is the level of risk a particular hazard is assessed as posing to the safety of the drinking water once the existing preventative measure/s have been applied.

Residual risk is determined using the same methodology (e.g. likelihood and consequence descriptors) as the initial maximum risk assessment; however changes to the assessed likelihood (or consequence) should result in a lower resultant risk level.

4.3 Key Stakeholders

Table 4-6 Stakeholders – Risk Assessment

Stakeholder	Contact Name and Details	Rationale For Engagement And How Engagement Occurred
Quilpie Shire Council	Peter See Quilpie Shire Council P: (07) 4656 0500 E: <u>PeterS@quilpie.qld.gov.au</u>	Engineering Services Director for Quilpie Shire Council Review and Risk Assessment Workshop Management of DWQMP Preparation
	Alan McNall Water Officer	Review and Risk Assessment Workshop

Stakeholder	Contact Name and Details	Rationale For Engagement And How Engagement Occurred
	Quilpie & Eromanga Water Supplies	
	Lalirra lander Administration Officer QSC	Review and Risk Assessment Workshop Information management
Consultants	William Green George Bourne & Associates P (07) 4651 5177 E <u>wgreen@gbassoc.com.au</u>	Review and Risk Assessment Workshop Amendment of Quilpie DWQMP

5 MANAGING RISKS

Quilpie source water from a relatively deep artesian bore and does not undergo any treatment processes.

Eromanga's raw water requires treatment prior to reticulation to meet acceptable drinking water quality levels. A new treatment plant was commissioned in 2014 to provide improved drinking water quality.

For Eromanga's supply scheme there is a residual risk related to plant failure or shutdown, where a backup supply system will be required to supply the scheme. The backup water to be provided in the event of treatment plant failure will be sourced from the Quilpie drinking water supply, the water will be trucked in on a regular basis as demand requires. When the backup water supply is commissioned due to plant shutdown Eromanga residents will be required to be notified that an alternate water source has been provided. In this situation due to the small population of Eromanga notifying town residents is relatively easy, council plan on notifying residents in person by door knocking and or leaving notices at individual properties. The person responsible for most of the daily operations associated with the Eromanga water supply lives locally and would most likely be able to promptly notify residence in the event of plant failure.

In the event of the road flooding between Quilpie and Eromanga which stops the delivery of water from Quilpie by road, consideration will be given to using the old artesian bore for basic water supplies only. The analysis of the water is shown in Appendix H This will be the least favoured option and will only occur if the treatment plant has failed and flooding of the road has occurred. It is considered very unlikely that this option will ever be used.

The bore is operational and currently supplies water for roadworks oerations, animals on the town common and for wash down water at the IOR Oil Refinery.

Managing risks are discussed in the following sections below:

- 5.2 Operation and Maintenance Procedures
- 5.3 Management of Incidents and Emergencies
- 5.4 Risk Management Improvement Program

5.1 Operation and Maintenance Procedures

The risk assessment process for the QSC Schemes, has identified that residual risks could be reduced by reviewing and amending existing Operational and Maintenance Procedures. It has therefore been identified that existing Operations and Management Procedures are to be reviewed and amended to address related residual risks identified. Documentation to be reviewed or developed includes:

Table 5-1 DWQMP Operations and Maintenance Procedures QSC

• Operation and Maintenance Eromanga Water Treatment Plant

• Outline Water Supply Contamination Contingency Plan

- Emergency Response
- Boiled water alert procedure
- Alternate water supply contingency
- Trunk Main Shut Down Planned & Unplanned Maintenance
 - Water main repair procedure
 - Water repair disinfection procedures
 - Boiled water alert procedure

5.1.1 Information Management

Effective governance and mitigating prioritised risk associated with the delivery of safe drinking water is dependent on QSCs capacity to manage information effectively. In order to monitor water quality in the Quilpie and Eromanga schemes, regular water analysis is conducted in alignment with the Verification Monitoring Program outlined in Table 6.2 below.

Water quality results are received by councils Engineer. The water quality data is maintained in electronic format in a spreadsheet to maintain a single record of all water quality data. The spreadsheet is maintained with trends graph to provide visual guides depicting trends over time. Analytical reports received from QLD Health laboratories and in-house test results once received are uploaded into council's information management system *Info Expert and stored* in electronic format in a chronological order to ensure information is accessible accurate and up to date.

In order to manage information effectively it is necessary to identify stakeholders involved in the delivery and management of safe drinking water supplies. Table 5.2 below provides a breakdown of the information management requirements for the supply schemes of Quilpie and Eromanga.

Role	Responsibility	
Chief Executive Officer	Ensure quality management systems in place	
Administration Officer	 Record Keeping - Monitoring Filing of operational monitoring inspection forms Filing verification monitoring lab reports Filing monthly in-house bacteriological results Collation of weekly operational monitoring data Collation of monthly bacteriological results to dataset Collation of verification monitoring results to dataset Filing chain of custody documents for verification testing samples 	
	 Record Keeping General Record all incidents, file notifications and associated data Record water quality complaints on complaints register Document Control/ Quality Systems Management Maintain document register for all DWQMP related documents including O&M procedures Track review dates for documents and initiate reviews 	
Water Officer	 Operational inspections of water bores in Quilpie and Eromanga Completion of weekly inspection forms Delivery of inspection forms to Administration Officer Weekly operational water testing and maintenance inspections at Eromanga water treatment plant Completion of weekly inspection forms Documentation of maintenance works Delivery of water testing and maintenance documentation to Administration Officer 	
	 Operations in-house Bacteriological testing Record and document test results Delivery of water testing results to Administration Officer 	

Table 5-2 Staff Responsibilities: Information Management QSC

Role	Responsibility		
	Monthly Water Officers Report		
	Record and document water management activitiesDeliver Monthly Water Officers report to Engineer		
	Quarterly Verification Monitoring		
	Signing chain of custody document prior to sending samplesSampling water and freight tot lab		
	DWQM Procedures		
	- Develop or assist with the development of Operational & Maintenance procedures		
	- Amend procedures when changes are implemented		
	Incident Management		
	 Compile or assist with compilation of incident notification Record incident in monthly Water Officers report. Direct water quality complaints or record complaint information to be recorded on the water quality complaints register 		

5.1.2 **Document Control Procedures**

Council document control procedures require Operation and Maintenance documents to be given a document number, title, and revision date used for maintaining the documented control procedure. The principal purpose of the document control procedures is to implement routine revision of documents and maintain up-to-date records as required to all necessary parties.

The document control procedures adopted by QSC form a key component of their quality assurance system. The control procedures track documentation preparation and handling and in turn place accountability with employees. The identification of version number and subsequent version date ensures that only the most recent valid information is published and circulated.

Based on control procedures, documents are routinely reviewed on a regular basis, and amended were required to ensure employees have access to the most current information. This process is reflective of QCS's commitment to continual development.

In order to provide a robust document control system a document register is to be developed identifying all of the documentation relating to DWQMP for the water supply schemes of QSC. The document register will record the title of all documents relating to drinking water quality management, stakeholders the document is targeted for, the locations that the documents are to be kept, the approval date of the document and the next scheduled review date for the document.

5.2 Management of Incidents and Emergencies

Table 5-3 shows the different levels of incidents for the entire drinking water service. There are five levels of incidents and emergencies ranging from Level 5 (most severe) to Level 1 (least severe). Quilpie Shire Council has developed a Local Disaster Management Plan (current version dated August 2016). Level 5 incidents and emergencies should be handled under the Quilpie Shire Council Local Disaster Management Plan and are likely to be the result or cause of other emergencies which are covered under the plan.

Table 5-4 shows how incidents and emergencies are managed relevant to drinking water quality.

The use of Eromanga Artesian bore water as a secondary and last resort where potable water cannot be imported from Quilpie during plant failure or shutdown has been identified as an emergency situation. Council's first response will always be by trucking in Quilpie potable water however if road flooding occurs this may not be possible. Only then will the Eromanga artesian water be used.

For Eromanga's supply scheme there is a residual risk related to plant failure or shutdown, the preferred option for the provision of a an alternate water supply is to transport water in from Quilpie's drinking water supply, which would be delivered by a water tanker and pumped into the clean-water tank.

In an emergency situation where the backup supply is sourced from the previous deep artesian water supply, provisions will need to be made to ensure the safety of the customers due to the artesian water quality being of a lower quality than the treated water and does not meet the ADWG for a number of characteristics such as Fluoride, Total Dissolved Solids and Sodium (i). Notices will be hand delivered to customers advising them of the poor quality of the water and that it is not suitable for drinking due to the characteristics above (i).

When the backup water supply is commissioned due to plant shutdown Eromanga residents will be notified that an alternate water source of lesser quality has been provided. In this situation due to the small population of Eromanga notifying town residents is relatively easy, as the person responsible for most of the daily operations associated with the Eromanga water supply lives locally and would most likely be able to promptly notify residence in the event of plant failure by door knocking and or leaving notices at individual properties. Furthermore, Fact Sheets will be provided at motel accommodations, the Tourist Information Centre, the Museum, the Eromanga Hotel and Caravan Park to ensure distribution to all residents and visitors.

In an emergency situation, additional notification will occur through media outlets such as ABC Local Radio, the QSC website and the Council Facebook page.

Table 5-4 details the emergency contact details for and protocols to be followed when a particular emergency or incident occurs. It is essential for effective incident and emergency management that these contact details are maintained by the service provider in order to effectively manage these situations. All other contact details for incident and emergency management are included in Quilpie Shire Council's Local Disaster Management Plan.

Table 5-3 Incident / Emergency Levels

Incident / Emergency level	Description of level
Level 5	 Widespread outbreak of waterborne disease Declared disaster Supply unable to be maintained Gross exceedances of ADWG health guideline values for a chemical parameter (> five times the ADWG health guideline limit).
Level 4	 High level of E. coli (> 5 CFU/ 100 mL) or any pathogens detected in reticulation Failure of infrastructure (severe or emergency level supply restrictions required to ensure continuity of supply) Major Cyber security breach resulting in interference of the operation of the water supply scheme.

Level 3	 Detection of 1-5 CFU/100 mL E. coli in reticulation Failure of infrastructure (ability to supply water compromised – short term water restrictions may be required) Minor exceedances of ADWG health guideline value for chemical parameter (determined value is close to guideline value). 	
Level 2	 Failure of infrastructure or source supply (water quality or supply unlikely to be compromised) Exceedances of ADWG aesthetic guideline or an irregular value pertaining to a parameter with no criterion (customer complaints possible) Cyber security breach resulting in minor interference of the operation of the water supply scheme water supply scheme. 	
Level 1	 Exceedances of operational limit managed through operational and maintenance procedures 	

Table 5-4 Management of Incidents and Emergencies

Incident or Emergency	Summary of Actions to Be Taken (With Documented Procedure Listed)	Position/S Responsible for Action/S
Disaster levels - Implement Quilpie Shire Council Local Disaster Management Plan Report to Department of Natural Resources Mines and Energy (Water Supply Regulator) by phone and written incident report within 24 hours		
High level of E. coli (> 5 CFU/ 100 mL) or any pathogens detected in reticulation	 Alert Engineer and Chief Executive Officer Determine potentially affected area, isolate if possible. Issue Boil Water alert. Escalate emergency further if situation worsens. Report details to the Water Supply Regulator, Drinking Water Quality Incident Hotline - phone 1300 596 709 within 3 hours and Notify the Water Supply Regulator by Initial notification form within 24hours - drinkingwater.reporting@dnrme.qld.gov.au Resample for E. coli and disinfectant residual in potentially affected infrastructure Undertake comprehensive contamination investigation Undertake necessary corrective actions Upon resolution, provide written report to regulator (Part 2 incident form) and Chief Executive Officer Non-compliance will be raised and will require signing off by the Chief Executive Officer after corrective actions 	 Engineer Engineer Engineer Engineer Engineer Engineer As appropriate Engineer Engineer Engineer Engineer
	Disaster levels - Report to Department of Natural Resou High level of E. coli (> 5 CFU/ 100 mL)	Procedure Listed) Disaster levels - Implement Quilpie Shire Council Local Disaster Management Pla Report to Department of Natural Resources Mines and Energy (Water Supply Regulator) by phone and within 24 hours High level of E. coli (> 5 CFU/ 100 mL) or any pathogens detected in reticulation 1. Alert Engineer and Chief Executive Officer 2. Determine potentially affected area, isolate if possible. Issue Boil Water alert. Escalate emergency further if situation worsens. 3. Report details to the Water Supply Regulator, Drinking Water Quality Incident Hotline - phone 1300 596 709 within 3 hours and Notify the Water Supply Regulator by Initial notification form within 24hours - drinkingwater.reporting@dnrme.qld.gov.au 4. Resample for E. coli and disinfectant residual in potentially affected infrastructure 5. Undertake comprehensive contamination investigation 6. Undertake necessary corrective actions 7. Upon resolution, provide written report to regulator (Part 2 incident form) and Chief Executive Officer

Level	Incident or Emergency	Summary of Actions to Be Taken (With Documented Procedure Listed)	Position/S Responsible for Action/S
significant cy electronic wa	Failure of infrastructure including significant cyber security breach where electronic water supply infrastructure operation could be compromised, such	 Alert Engineer and Chief Executive Officer. Notify IT support services/infrastructure providers where major cyber security breach has occurred. 	1. Engineer
	as security breach of SCADA systems. (severe or emergency level supply restrictions required to ensure continuity of supply)	 Determine reason for failure, isolate if possible. Consider options to recommence supply. 	2. Engineer
		3. Report details to the Water Supply Regulator, Drinking Water Quality Incident Hotline - phone 1300 596 709 within 3 hours and Notify the Water Supply Regulator by Initial notification form within 24hours - drinkingwater.reporting@dnrme.gld.gov.au	3. Engineer
		4. Undertake comprehensive failure investigation	4. Engineer
			5. As appropriate
		 Undertake necessary corrective actions to recommence supply and provide an estimate of when the supply can be recommenced 	6. Engineer / Chief Executive Officer
		 Implement severe or emergency level supply restrictions. Consider escalating to a Level 1 incident. Notify the public. 	7. Engineer
		 Upon resolution, provide written report to regulator (Part 2 incident form). Provide written report to the Chief Executive Officer 	8. Engineer / Chief Executive Officer
		8. Non-compliance will be raised and will require signing off by the Engineer and the Chief Executive Officer after corrective actions have taken place.	

Level	Incident or Emergency	Summary of Actions to Be Taken (With Documented Procedure Listed)	Position/S Responsible for Action/S
3	Detection of 1-5 CFU/100mL E.coli in reticulation	1. Alert Engineer and Chief Executive Officer	1. Engineer
		 Determine potentially affected area, isolate if possible. Consider Boil Water alert. Escalate emergency further if situation worsens. 	2. Engineer
		 Report details to the Water Supply Regulator, Drinking Water Quality Incident Hotline - phone 1300 596 709 within 3 hours and Notify the Water Supply Regulator by Initial notification form within 24hours - <u>drinkingwater.reporting@dnrme.qld.gov.au</u> 	3. Engineer
		 Resample for E. coli and disinfectant residual in potentially affected infrastructure 	4. Engineer
		5. Undertake comprehensive contamination investigation	5. Engineer
		6. Undertake necessary corrective actions	6. As appropriate
		 Upon resolution, provide written report to regulator (Part 2 incident form) 	7. Engineer
		8. Non-compliance will be raised and will require signing off by the Engineer and the Chief Executive Officer after corrective actions have taken place.	8. Engineer / Chief Executive Officer

Level	Incident or Emergency	Summary of Actions to Be Taken (With Documented Procedure Listed)	Position/S Responsible for Action/S
3	Minor exceedances of ADWG health guideline value for chemical parameter	1. Alert Engineer and Chief Executive Officer	1. Engineer
	(determined value is close to guideline value).	 Determine potentially affected area, isolate if possible (i.e. individual bore). Consider Water alert. Escalate emergency further if situation worsens. 	2. Engineer
		3. Report details to the Water Supply Regulator, Drinking Water Quality Incident Hotline - phone 1300 596 709 within 3 hours and Notify the Water Supply Regulator by Initial notification form within 24hours - <u>drinkingwater.reporting@dnrme.qld.gov.au</u>	3. Engineer
		4. Resample for detected health parameter for all bores and combined bores (if possible)	4. Engineer
		5. Undertake comprehensive contamination investigation	5. Engineer
		6. Undertake necessary corrective actions	6. Engineer
		7. Upon resolution, provide written report to regulator (Part 2 incident form). Provide Report to Chief Executive Officer also.	7. Engineer
		 Non-compliance will be raised and will require signing off by the Engineer and the Chief Executive Officer after corrective actions have taken place. 	8. Engineer / Chief Executive Officer

Level	Incident or Emergency	Summary of Actions to Be Taken (With Documented Procedure Listed)	Position/S Responsible for Action/S
3	Failure of infrastructure (ability to supply water compromised – short term water restrictions may be required)	1. Alert Chief Executive Officer, Notify IT support services/infrastructure providers of cyber security breach.	1. Water Officer
		2. Determine reason for failure, isolate if possible. Consider options to recommence supply.	2. Water Officer
		3. Undertake comprehensive failure investigation	3. Water Officer
3	Failure of infrastructure or source supply or minor cyber security breach such as computer virus or security breach on council server. (water quality or supply	 Report details to the Water Supply Regulator, Drinking Water Quality Incident Hotline - phone 1300 596 709 within 3 hours and Notify the Water Supply Regulator by Initial notification form within 24hours - 	4. As appropriate
	unlikely to be compromised)	drinkingwater.reporting@dnrme.qld.gov.au	5. Water Officer
		5. Undertake necessary corrective actions to recommence supply and provide an estimate of when the supply can	6. Water Officer
		be recommenced	7. Water Officer / Chief Executive Officer
		6. Implement Short Term Water restrictions if required	
		7. Provide written report to the Chief Executive Officer	
		8. Non-compliance to be raised and will require signing off by the Water Officer and the Chief Executive Officer after corrective actions have taken place.	
2	guideline or an irregular value pertaining to a parameter with no criterion (customer complaints possible).	1. Alert Engineer and Chief Executive Officer	1. Engineer
		 Determine potentially affected area, isolate if possible (i.e. individual bore). Consider Water alert. 	2. Engineer
		3. Resample for detected parameter for all bores and combined bores (if possible).	3. Engineer
		4. Undertake contamination investigation	4. Engineer
		5. Undertake necessary corrective actions	5. Engineer

Level	Incident or Emergency	Summary of Actions to Be Taken (With Documented Procedure Listed)	Position/S Responsible for Action/S
1	Exceedances of operational limit managed through operational and	1. Alert Engineer and Chief Executive Officer	1. Engineer
	maintenance procedures	2. Review operational procedures.	2. Engineer
		 Rectify exceedance and bring parameter within operational limits. Parameter shall be corrected same day. 	3. Engineer
			4. Engineer / Chief
		4. Non-compliance to be raised and will require signing off by the Engineer and the Chief Executive Officer after corrective actions have taken place.	Executive Officer

*Note – QSC operational monitoring methodologies do not quantify the number of CFU/100mL E.coli in initial testing but undertake a presence or absence test to determine its presence. If E. coli is present, follow up tests are conducted to determine quantities present.

Level	Incident or Emergency	Communication process to customers				
5	Disaster levels	Implement Quilpie Shire Council Local Disaster Management Plan				
4	High level of E. coli (> 5 CFU/ 100 mL) or any	Issue Boil Water Alert to sensitive users directly by phone and email				
	pathogens detected in reticulation	Issue Boil Water Alert to community through, Council Facebook page, Email notification distribution list, door knocking if required				
	Failure of infrastructure (severe or emergency	Notify sensitive users directly by phone and email				
	level supply restrictions required to ensure continuity of supply)	Notify Community through Council Facebook page, Email notification distribution list,				
3	Detection of 1-5 CFU/100mL E.coli in	Notify sensitive users directly by phone and email				
	reticulation	Consider boil water alert and issue to community in accordance with level 4 above				
	Minor exceedance of ADWG health guideline	Notify sensitive users directly by phone and email				
	Failure of infrastructure (ability to supply water compromised – short term water restrictions may be required)	Notify sensitive users directly by phone and email				
2	Failure of infrastructure or source supply (water quality or supply unlikely to be compromised)					
	Exceedances of ADWG aesthetic guideline or an irregular value pertaining to a parameter with no criterion (customer complaints possible)	Community notifications not required				
1	Exceedance of operational limit managed through operational and maintenance procedures					

Table 5-6 DWSP Sensitive Users

Sensitive Users	Address	Phone	Email
Quilpie Hospital	30 Gyrica St, Quilpie, QLD 4480	P: (07) 4656 0100	Swhhs- quilpie_admin@health.qld.gov.au
Mulga Mates Centre (Quilpie Kindergarten)	68 Winchu St, Quilpie QLD 4480	P: (07) 4656 1182	quilpiekindergarten@bigpond.com
St Finbarr's School Quilpie	Jabiru St, Quilpie QLD 4480	P: (07) 4656 1412	quilpie@twb.catholic.edu.au
Quilpie State College	Chulungra St, Quilpie QLD 4480	P: (07) 4656 0333	admin@quilpiesc.eq.edu.au
Gyrica Gardens (aged pensioners units) Contact: Lisa Hamlyn Corporate Services QSC	Units 9-21 Gyrica St, Quilpie, QLD 4480	P: (07) 4656 0500	dceo@quilpie.qld.gov.au

5.3 Risk Management Improvement Program

Unacceptable residual risks or risks identified in the plan have been included in the Risk Management Improvement Program (RMIP) below for Quilpie in 5.3.1 and Eromanga in 5.3.2 below.

The RMIP also includes for improvements to parts of the plan where deficiencies in information or uncertainties exist. Priorities of the improvements and target dates for completion have also been included.

5.3.1 **Quilpie RMIP**

Table 5-7 below outlines the proposed RMIP to be implemented for Quilpie.

Table 5-7 Quilpie Risk Management Improvement Program

Comments/ Proposed Further Risk	Scheme	Hazardous Event	Priority		Action(s)		Estimated	Target	Responsibility
Reduction Actions	Component / Sub- component	Hazardous Event	Phoney	Interim	Short-term	Long-term	Cost (\$)	date/s	Responsibility
Q1. Construct new water supply bore	Sourcing Infrastructure	Bore Failure	Medium	Contract awarded	Construct additional artesian bore	Construct additional artesian bore	650,000.00	Dec-20	
Q2. Update O & M Procedures address microbial contamination risks for maintenance and repair of water mains	Sourcing Infrastructure Distribution System Whole of System	Maintenance and repair of water main	High	N/A	Completion of updated procedures	N/A	5,000.00	Dec-20	Overa
Q3. Undertake a temperature monitoring program for the reticulation system to determine if temperatures are reducing the risk of pathogen presence	Sourcing Infrastructure Distribution System	Maintenance and repair of water main	High	N/A	Undertake water temperature analysis project	N/A	20,000.00	Dec-20	rall Responsi
Q4. Reduce contamination risks at standpipe locations. Install backflow prevention protection and improved hose storage system	Distribution System	Accidental or intentional contamination	High	N/A	install non-return valve and hose coil	N/A	10,000.00	Dec-20	sibility - CEO
Q5. Monitoring data and documentation consolidated and managed centrally	Whole of System	Poor information management	High	N/A	Consolidate water quality data	N/A	10,000	Jun-21	0
Q6. Upgrade water testing facilities. Provide dedicated testing facility to ensure hygienic conditions for water testing	Whole of System	Contamination of water samples	High	Undertake project planning and investigations	Set up water testing laboratory in Quilpie		30,000.00	Dec-20	

5.3.2 Eromanga RMIP

Table 5-10 below outlines the proposed RMIP to be implemented for Eromanga.

Table 5-8 Eromanga Risk Management Improvement Program

Commonts / Dronocod Eurthor	Schome Component/			Action(s)			Estimated	Target	
Comments/ Proposed Further Risk Reduction Actions	Scheme Component/ Sub-component	Hazardous Event	Priority	Interim	Short-term	Long- term	Cost (\$)	Target date/s	Responsibility
E1. Undertake bore water quality investigation to assess risk of water pathogens in sub artesian water.	Catchment Sourcing Infrastructure	Sewage system discharges, agricultural run-off Flood Event Accidental or intentional contamination	High	Project planning and budgeting	Undertake testing program to identify potential hazards associated with water quality at individual bores.	N/A	40,000.00	Jun-21	
E2. Update O & M Procedures address microbial contamination risks for maintenance and repair of water mains	Sourcing Infrastructure Distribution System	Reticulation maintenance and repair	High	N/A	Completion of updated procedures.	N/A	10,000.00	Dec-20	
E 3. Engage water treatment specialist/s to undertake system review, Undertake critical maintenance, & develop detailed and succinct Plant Operational and Maintenance Procedures.	Treatment Plant Whole of System	Equipment failure Lack of human resources	High	Project planning	Engage Specialist to undertake review of plant system and implement improvements, develop plant operating procedures.	N/A	100,000.00	Jun-21	Overall Res
E4. Trend pre and post pressures of media and RO pressure gauges to ascertain safe operating parameters.	Treatment Plant	Head loss build up to media filters and RO membranes	High	N/A	Trend existing treatment plant data, continue to monitor and analyse trends	N/A	10,000.00	Jun-21	Responsibility -
E.5 Investigate and modify chlorine storage and deliver system to avoid chemical degradation and gassing	Disinfection Process (Sodium Hypochlorite)	Chlorine Storage conditions, chemical degradation and gassing	High	N/A	Assess options to avoid chlorine degradation and gassing in hot climate	N/A	15,000.00	Jun-21	- CEO
E6. Caravan septic disposal point in the vicinity of Town hall bore to be concreted and bunded.	Distribution System	Accidental or intentional contamination	High	Project planning and budgeting	Bund septic disposal point to reduce risk of contamination	N/A	25,000.00	Jun-21	
E7. Monitoring data and documentation consolidated and managed centrally	Whole of System	Poor information management	High	N/A	Consolidate water quality data	N/A	10,000	Jun-21	
E7. Upgrade water testing facilities. Provide dedicated testing lab to ensure hygienic conditions for water testing	Whole of System	Contamination of water samples	High	Project planning and budgeting	Set up water testing laboratory in Quilpie	N/A	50,000.00	Dec-20	

6 OPERATIONAL AND VERIFICATION MONITORING PROGRAMS

Details of the operational monitoring programs are tabulated below for Quilpie in Table 6-1.

Details of the verification monitoring programs for Eromanga are tabulated in Table 6-3.

6.1 Operational Monitoring

Operational monitoring for Council's water supply schemes is tabulated in Table 6-1 and 6.2 below detailing monitoring locations, parameters measured, target and critical levels and actions to be taken in the event the levels are exceeded.

The persons responsible for operational monitoring include the Chief Executive Officer, Engineer and the Water Officer. The Water Officer is responsible for conducting operational monitoring.

The Water Officer will be required to log all maintenance issues in a monthly report and a copy of this shall be sent to the Engineer. While the Water Officer will be encouraged to maintain informal lines of communication, formal communications shall also be required so as to enable a means for improved record keeping. Maintenance monitoring shall include but not limited to visual inspections to ensure that access to bore sites is restricted.

Table 6-1 Quilpie Operational Monitoring

Location	Parameter	Associated	Sampling/ Assessment		Idiget Monitoring Location A	Action if target limit	Critical	Action if critical limit	Positions	
Location	Parameter	Hazard	Frequency	Method	limit		exceeded	limit	exceeded	Responsible
	Pressure	Bore pressure exceedance or blockage	Weekly	Visual	200- 550kPa	Bore head works below pressure reducing valve	 Check pressure reducing valves Replace valves if necessary Check bore pressure 	785kPa	 Replace pressure reducing valve Flush Bore CCTV bore inspection 	
Bores	Integrity	Microorganism ingress	Weekly	Visual	0 - E.coli detection	Water samples taken from distribution system (fortnightly) Testing to be conducted at bore head if bore integrity deemed to be compromised	 Record issues in maintenance log Implement incident management process Conduct E.coli testing if bore integrity is compromised and potential for infiltration is identified 	0 - E.coli detection	 Commission maintenance activities immediately Implement incident management process 	Overall Responsibility Chief Executive Officer
	Security	Unauthorised access	Weekly	Visual	N/A	Bore Head	 Record issues in maintenance log Program maintenance 	N/A	 Record issues in maintenance log Program maintenance Repair security fence if required 	Implementation, review and actions: Engineer
Reticulation System	E.coli	Bacteria	Fortnightly	Colilert test	0 - E.coli detection	3 Sites on rotational basis Quilpie Hospital Quilpie Shire Office Quilpie Shire Depot John Waugh Park Bulloo Park Complex	 Implement incident management process Isolate if possible Boil water alert if necessary Incident investigation and improvement actions implemented 	0 - E.coli detection	 Implement incident management process Isolate if possible Boil water alert if necessary Incident investigation and improvement actions implemented 	Operations: Water Officer
	Integrity	Microorganism infection	Opportunistically	Visual	N/A	All over	 Record issues in maintenance log Program maintenance 	N/A	 Record issues in maintenance log Program maintenance 	

Table 6-2 Eromanga Operational Monitoring

Location	Dowowedow	Associated Hazard	Sampling/Assessment		Target	Monitoring	Action if target limit	Cuitica Llinsit	Action if critical limit	Positions
in System	Parameter		Frequency	Method	limit	Location	exceeded	Critical limit	exceeded	Responsible
Bores	Integrity	Microorganism ingress	Weekly	Visual	0 - E.coli detection	Weekly bacteriological testing in reticulation	 Record issues in maintenance log Implement incident management process Conduct E.coli testing if bore integrity is compromised and potential for infiltration is identified 	0 - E.coli detection	 Commission maintenance activities immediately Implement incident management process 	
	Security	Microorganism ingress	Weekly	Colilert testing	0 - E.coli detection	Weekly bacteriological testing in reticulation	 Implement incident management process Conduct E.coli testing if bore integrity is compromised and potential for infiltration is identified 	0 - E.coli detection	 Implement incident management process Conduct E.coli testing if bore integrity is compromised and potential for infiltration is identified 	Overall
Raw Water Tanks	capacity		water tank	Pressure sensor raw water tank outlet	Stop Bore supply pumps until capacity reaches 90%	Upper Critical Limit: 99% Lower Critical Limit: 15%	Limit: 99% - Shutdown Bore supply pumps Lower Critical Limit			
	Antiscalant Dosing	Severe RO Plant Damage	Constant	Electronic Monitoring	0.28L/hr	Electronic dosage meter antiscalant tank	Adjust dosage pump speed as required	<0.28L/hr	 Shutdown RO plant to prevent damage Check antiscalant tanks and replace if low capacity 	on, review and actions: Engineer Operations:
	Media filtration pressure	Blinding of filter media	Weekly	Visual	To be determined	Pre and post media filter	N/A	To be determined	 If obvious pre-filter pressure differentials are occurring and automatic backwashes are not reducing pressures media should be replaced. 	Water Officer
Treatment Plant	RO Conductivit Y	Scaling / Aesthetics	Constant	Electronic Monitoring	<350µs/cm	Conductivity sensor prior to RO on butterfly valve & Blended water sensor post Ro membranes	- Clean/Replace RO membranes	>875µs/cm Blend Conductivity	 Reduce blend valve opening % Check HMI faults page and conduct maintenance Engage specialist if required 	
	RO pressure	Scaling of membranes	Constant	Electronic Monitoring	To be determined	Pressure valve prior to RO membranes and Post RO membranes	- Clean/Replace RO membranes	To be determined	 If obvious pre-membrane pressure differentials are occurring, cleaning or replacement of membranes required. Engage specialist if required 	

Location	Parameter	Associated	Sampling/Assessment		Target	Monitoring	Action if target limit	Critical limit	Action if critical limit	Positions
in System	Parameter	Hazard	Frequency	Method	limit	Location	exceeded		exceeded	Responsible
	Free Chlorine	Pathogens	Weekly	Water sample Clean water tank monitorin g equipment	0.5 - 0.2mg/L	Three locations on rotation: Clean water tank outlet Eromanga Pub Eromanga Hall Neil St Council House	Adjust dosage pump speed as required	Upper Critical Limit: >2.5mg/L Lower Critical Limit: <0.2mg/L	 Upper Critical Limit Reduce dosage pump speed Top up supply with lower chlorine concentration Engage disinfection specialist if required Lower Critical Limit Check chlorine storage tank level Increase dosage pump speed Conduct E.coli test Engage specialist if required Issue boil water alert 	
Reticulatio n System	E.coli	Bacteria	Weekly	Colilert test	0 - E.coli detection	Three locations on rotation: Clean water tank outlet Eromanga Pub Eromanga Hall Neil St Council House	 Implement incident management process Isolate if possible Boil water alert if necessary Incident investigation and improvement actions implemented 	0 - E.coli detection	 Implement incident management process Isolate if possible Boil water alert if necessary Incident investigation and improvement actions implemented 	

6.2 Verification Monitoring

Table 6-3 below tabulates the parameters to be monitored, monitoring locations and frequency of monitoring for Quilpie and Eromanga schemes.

6.2.1 **Quilpie and Eromanga Verification Monitoring**

Quilpie have two deep artesian bores. In Quilpie bore water is supplied directly to reticulation without pumping, storage or disinfection.

Eromanga's water supply comes from four sub artesian bores; source water then goes through a reverse osmosis treatment process, chlorination and storage before distributed to residents.

For Quilpie and Eromanga schemes, microbial, physical and inorganics verification monitoring will be conducted at various points in the reticulation system. These points will include public buildings to facilitate access.

Data from verification monitoring shall be recorded in a master spread sheet which when each new analysis suite is added, trends will be automatically updated based on the date and each data set. The trends for each scheme and each parameter sampled are enclosed in section 0 above.

Refer to Appendix B for sampling locations. Locations were chosen in public facilities to allow for authorised access to sampling locations.

Table 6-3 Quilpie Verification Monitoring

Characteristi c	Parameter	ADWG &/or Regulation Value	Associated Hazard	Frequency	Sampling Locations	Analysing Authority	Response to Exceedances
Microbial quality	E.coli	Nil detect	Bacteria		One site within distribution		Refer to incident management Plan
	рН	рН 6.5-8.5		Quarterly	system on rotation:	QHFSS	
	Temperature	N/A	Hazard that arises from the natural geological processes in the		Quilpie Hospital		
Physical	Colour	15 HU - Aesthetic			Quilpie Shire Office		Acceptable risk, continue to monitor for exceedances
	Turbidity	5 NTU - Aesthetic			Quilpie Shire Depot		
	Chloride	250mg/L - Aesthetic			John Waugh Park Bulloo Park Complex		
	Iron	0.3mg/L - Aesthetic			One bore on		
Inorganico	Silica	80mg/L - Aesthetic	aquifer.		rotation: No.1 & 2. Tap		
Inorganics	Sodium	180mg/L - Aesthetic			located at bore. Rotate testing each quarter to sample each bore twice annually.		
	Manganese	0.5mg/L - Health					Notify DNRME and complete incident reporting forms
	Fluoride	1.5mg/L - Health					

Table 6-4 Eromanga Verification Monitoring

Characteristi c	Parameter	ADWG &/or Regulation Value	Associated Hazard	Frequency	Sampling Locations	Analysing Authority	Response to Exceedances
Microbial quality	E.coli	Nil detect	Bacteria				Refer to incident management Plan
	рН	pH 6.5-8.5		Quarterly		QHFSS	
	Temperature	N/A			Three samples in total - One sample from the clean water tank outlet One sample from the reticulation system from one of the following locations: Eromanga Pub Eromanga Hall Neal St House And one sample from the Town Bores, Rotate testing		
Physical	Colour	15 HU - Aesthetic					
	Turbidity	5 NTU - Aesthetic					Acceptable risk, continue to monitor for exceedances
	Chloride	250mg/L - Aesthetic					
	Iron	0.3mg/l - Aesthetic	Hazard that arises from the				
	Sodium	180mg/l - Aesthetic	natural geological processes in the aquifer.				
	Silica	80mg/L - Aesthetic					
Turunanian	Phosphate	N/A					
Inorganics	Manganese	0.5mg/l - Health					
	Fluoride	1.5mg/l - Health			location each quarter to sample		
	Nitrate	50mg/l -Health			each bore annually.		Notify DNRME and complete incident
	Trihalomethanes	25mg/l - Health	Chlorination by-				reporting forms
	Chlorate	N/A	product				

APPENDIX A DRINKING WATER QUALITY MANAGEMENT PLAN APPROVAL APPLICATION

Drinking Water Quality Management Plan Approval Application

Water Supply (Safety and Reliability) Act 2008, section 95

Privacy Disclaimer: Collection of information provided in this approved form and any attachments is authorised under the Water Supply (Safety and Reliability) Act 2008 and is being used for the purpose of applying to the Office of the Water Supply Regulator for approval of a drinking water quality management plan. The Department of Environment and Resource Management will endeavour to maintain any confidentiality of information relating to your form. However, consideration of your form may involve consultation and it is o, details of your form may be disclosed to third parties. This information will not otherwise be disclosed outside of the department unless required or authorised by law (for example as under the Right to Information Act 2009).

Note: This is an approved form under the Water Supply (Safety and Reliability) Act 2008, to be used by the drinking water service provider, to apply to the regulator for approval of a drinking water quality management plan (DWQMP).

Before submitting this approved form, please be fully aware of your rights and obligations under the Water Supply (Safety and Reliability) Act 2008.

1. Drinking Water Service Provider Details -

Drinking water service provider	SPID
Quilpie Shire Council	108

2. Contact Details -

Principal Contact

Family name	Given name(s)		Position			
Burges			CEO			
Postal address						
PO Box 57						
Quilpie			Postcode 4480			
Telephone number	Fax number	Mobile number	r			
(07)4656 0500	(07)4656 1441					
Email address						
admin@quilpie.qld.gov.a	u					

3. Drinking Water Scheme Details -

Please list the drinking water scheme(s) to which this plan applies

Quilpie
Eromanga
Adavale

(If space provided is insufficient, additional information may be attached)

Form WSR505 V01 Jan 2010

SSA Multimedia Services Page 1 of 2

Drinking Water Quality Management Plan Approval Application continued... page 2 of 2

4. Relevant Documents -

List below all supporting documentation attached to this application that form part of the DWQMP. Where a document applies to a specific scheme or schemes please state this (e.g. scheme name).

	Document Name(s)
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
space	e provided is insufficient, additional information may be attached)

5. Declaration ——

I/we declare and warrant that I/we have all the necessary and appropriate authority on behalf of the drinking water service provider to declare the information in this approved form, including any attachments or supporting information provided, are true and accurate to the best of my/our knowledge.

Family name	Given name(s)	Given name(s)						
Burges	Dave							
Position	Signature	Date (dd/mm/yyyy)						
CEO	DEN	271812012						
Family name	Given name(s)							
Position	Signature	Date (dd/mm/yyyy)						

6. Submission ·

Please complete and sign the form and send one (1) printed copy of all relevant materials, along with all materials saved on to CD (or equivalent electronic device) to:

Director

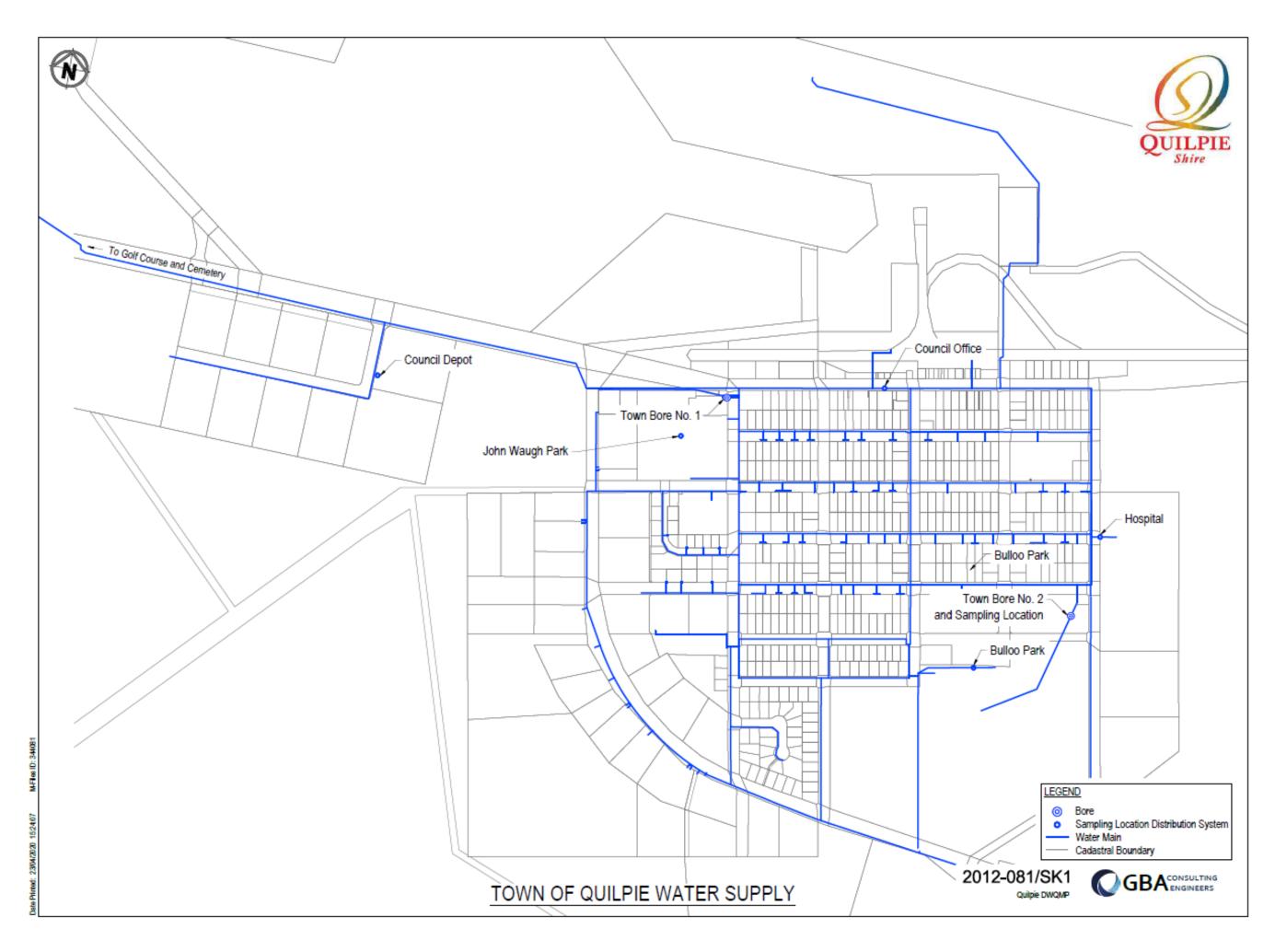
Water Industry Asset Management and Standards

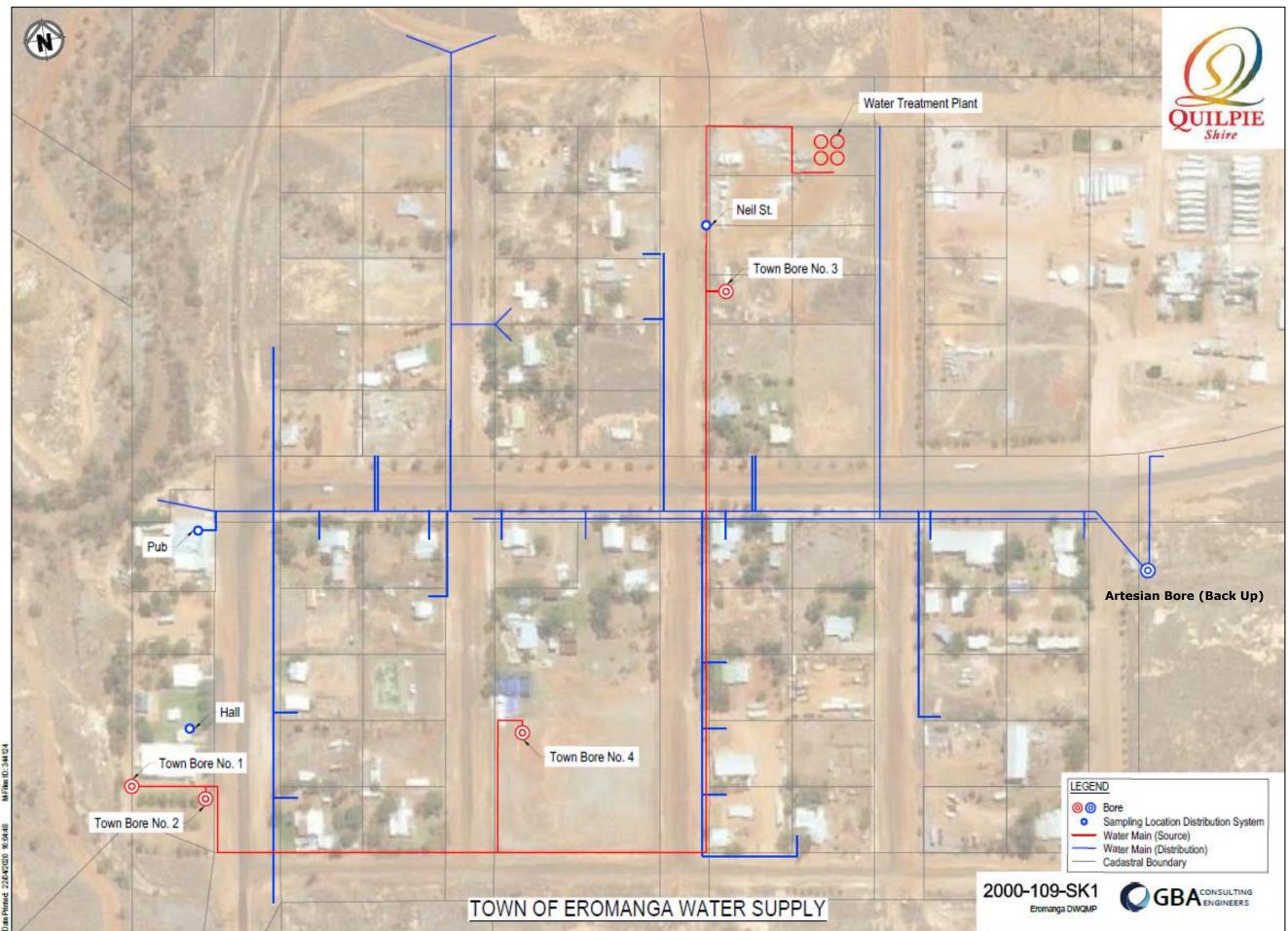
Office of the Water Supply Regulator

Department of Environment and Resource Management

GPO Box 2454

Brisbane Qld 4001


Form WSR505


V01 Jan 2010

SSA Multimedia Services Page 2 of 2

APPENDIX B WATER SUPPLY LAYOUTS SUPERIMPOSED ON AERIAL PHOTOS

GBA-2012-081 Quilpie Water Supply Scheme GBA-2000-109 Eromanga Water Supply Scheme

APPENDIX C BORE WATER REPORT CARD

BORE CARD REPORT - PUBLISHABLE

REG NUM BER 390

REGISTRATION DETAILS

			BASIN	0112			ITUDE 26-		MAP-SCAL				
OFFICE Char	rleville		SUB-AREA				ITUDE 144		MAP-SERIE				
DATE LOG RECD				6150-	150-QUILPIE EASTING 227403 MAP-NO SC) SG55-9			
D/O FILE NO. V17	0274		LOT			NOR	THING 705	MAP NAMEQUILPIE					
R/O FILE NO. 5613	333		PLAN				ZONE 55		PROG SECTION				
H/O FILE NO. L048	341B	C	RIGINAL DESCRIPTION	BORE	RESERVE 20	ACCU	RACY		PRES EQUIPMEN	r			
GIS LAT	-26.61	18182012	PARISHNAME	5162-	WOORBIL) QUILPIE	QUILPIE TOWN BORE						
GIS LNG	144.3	26229913	COUNTY	NICKA	ICKAVILLA BORE LINE -								
CHECKED N			PROPERTY NAME										
			FIELD LOCATION						POLYGO	N.			
									RN OF BORE REPLACE)			
FACILITY TYPE AF			DATE DRILLED	07/10	/1933				DATA OWNE	R			
STATUS EX			DRILLERS NAME						CONFIDENTIA	L			
ROLES			DRILL COMPANY										
	METHOD OF CONST				E TOOL								
					CA	SING DETAILS							
	PIP	E DATE	RECORD MATER				AT CITE	SIZE DESC	OUTSIDE	тор	BOTTOM		
	PIP	E DATE	NUMBER	IAL DES	SCRIPTION		(mm)	SIZEDESC	DIAM	(m)	(m)		
	A	07/10/1933	1 Steel Ca	sing (unspecified)				WT	254	0.00	66.40		
	Α	07/10/1933	2 Steel Ca	sing (ur	nspecified)			WT	203	0.00	177.10		
	Α	07/10/1933	3 Steel Ca	sing (ur	nspecified)			WT	152	0.00	899.80		
	Α	07/10/1933	4 Perforat	ed or Sl	lotted Casing			AP		878.50	900.00		
						TA LOG DETAIL	<u>.s</u>						
		RECORD			STRATA DE	SCRIPTION							
	E.		0.00	OT (m)	RED SOIL								
		2	1.22		ROCK								
		2	38.10		CLAY								
		4	80.16		SHALE								
		5	96.93	118.26	CLAY								

Page 1 of 7

BORE CARD REPORT - PUBLISHABLE

REG NUM BER 390

RECORD NUM BER	STRATA TOP (m)		STRATA DESCRIPTION
6	118.26	166.12	SHALE
7	166.12	289.56	CLAY WITH HARD STREAKS
8	289.56	449.58	SHALE WITH HARD STREAKS
9	449.58	452.63	SANDSTONE SAND
10	452.63	480.06	CLAY
11	480.06	601.37	SHALE
12	601.37	614.78	LIMESTONE SHALE
13	614.78	731.22	SHALE
14	731.22	734.57	SANDSTONE SAND
15	734.57	798.58	CLAY
16	798.58	801.62	SANDSTONE QUARTZ
17	801.62	841.25	CLAY AND SAND
18	841.25	852.53	SANDROCK
19	852.53	858.01	CLAY
20	858.01	873.25	SANDROCK
21	873.25	882.40	CLAY
22	882.40	899.77	SANDROCK, SANDSTONE

STRATIGRAPHY DETAILS

SOURCE	REC ORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
DNR	1	0.00		ALLUVIUM
DNR	2		30.50	TERTIARY SEDIMENTS
DNR	3	30.50		WINTON FORMATION
DNR	4			MACKUNDA FORMATION
DNR	5		440.10	ALLARU MUDSTONE
DNR	6	440.10	449.60	TOOLEBUC FORMATION
DNR	7	449.60		COREENA MEMBER
DNR	8		731.20	DONCASTER MEMBER
DNR	9	731.20	749.80	WYANDRA SANDSTONE MEMBER
DNR	10	749.80	823.00	CADNA-OWIE FORMATION

BORE CARD REPORT - PUBLISHABLE

REG NUM BER 390

	:	SOURCE	REC ORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION	I.						
	C	DNR	11	823.00	899.80	HOORAY SANDSTONE							
AQUIFER DETAILS													
REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW QUALITY	YIELD CTR (I/s)	CONDIT	FORMATION NAME				
1	27.40		SDST					PS	TERTIARY SEDIMEFORM				
2	64.00		SHLE					FR	WINTON FORMATION				
3	94.50		SHLE					FR	WINTON FORMATION				
4	143.30		SHLE					FR	WINTON FORMATION				
5	213.40		SHLE					FR	WINTON FORMATION				
6	449.60		SDST					PS	COREENA MEMBER				
7	731.50		SDST					PS	WYANDRA SANDSTONE MEMBER				
8	824.50	826.60	SDST					PS	HOORAY SANDSTONE				
9	843.10	852.50	SDST					PS	HOORAY SANDSTONE				
10	861.10	873.30	SDST					PS	HOORAY SANDSTONE				
11	885.40	886.90	SDST					PS	HOORAY SANDSTONE				
12	890.00		SDST					PS	HOORAY SANDSTONE				
13	893.10		SDST					PS	HOORAY SANDSTONE				

PUMP TEST DETAILS PART 1

**** NO RECORDS FOUND ****

PUMP TEST DETAILS PART 2

**** NO RECORDS FOUND ****

BORE CONDITION

	DRAIN D	DETAILS		HEA	DWO	RKS						
DATE	тот	MAXC	RET	С	С	LEAK	FLOW		EST USE	STOCK	C	
	LEN	RUN D	LEN	D	Т		IRREGULARITY	PRECIPITATE	(ML/yr)	CATTLE	SHEEP	COMMENT
	(km)	(km) N	(km)	Ν	L							

Page 3 of 7

DATE 22/08/2012

BORE CARD REPORT - PUBLISHABLE

REG NUM BER 390

14/11/1985 08/10/1975 30/08/1960 29/08/1960	G P	EVATION DETAILS	w ater distribution through tow n mains for domestic supply. Mains open ended and partial bore blow runs 2 drains to Paroo River on tow n common, requirements - remove and fit new headw orks to eliminate lead packer, threaded gun metal flange and casing joint, rotted casing inside 254mm casing shroud. Cement 152.4mm to 203.2mm casing annulus. Incorporate in new headw orks provision for connecting testing apparatus w ithout disturbing tow n reticulation connecting gear. Report on generator etc. on File 65. Bore has only 4" discharge.
PIPE DATE	ELEVATION PRECISION DATUM	MEASUREMENT POINT SURVEY SOURC	E
X 13/SEP/74	197.00 SVY STD	Ν	
	WAT	ER ANALYSIS PART1	
PIPE DATE RD ANALYST		COND pH Si TOTAL TOTAL uS/cm) (mg/L) IONS SOLIDS	HARD ALK FIG. OF SAR RAH MERIT
A 03/03/1976 1 GCL	066622 PU GB	950 8.2 724.20 0.00	12 339 0.0 27.5 6.54
A 24/04/1981 1 GCL	089759 MA GR	925 8.6 43 705.70 549.95	7 336 0.0 34.6 6.58
A 14/11/1985 1 GCL	112346 900.00 PU GB	900 8.7 36 679.32 529.80	5 321 0.0 38.0 6.31
X 01/09/1986 1 GCL	115676 900.00 PU GB	900 8.1 37 737.12 563.18	7 346 0.0 35.8 6.79
X 01/09/1986 2 GCL	115677 900.00 PU GB	880 8.2 36 723.82 553.96	6 339 0.0 39.0 6.67

WATER ANALYSIS PART 2 PIPE DATE RD ĸ Mn HCO3 CO3 F **SO4** Zn Na Са Мg Fe NO3 AI в Cu CI A 03/03/1976 1 216.0 2.2 4.0 0.4 405.0 4.1 88.0 1.30 3.2 A 24/04/1981 1 205.0 2.0 2.5 0.1 391.0 9.3 85.0 1.80 0.0 9.0 A 14/11/1985 1 200.0 2.2 2.1 0.0 0.01 365.0 0.01 13.0 87.0 1.70 0.5 7.8

of 7

Page 5

GROUNDWATER DATABASE

DATE 22/08/2012

BORE CARD REPORT - PUBLISHABLE

REG NUM BER 390

PIPE DAT		Na	к	Са		Mn	HCO3	Fe	CO3	CI	F	NO3	SO4		AI		в	Cu
X 01/09/19		210.0	2.5	2.6		0.01	415.0	0.01	3.5	93.0	1.60	0.5	8.4					
X 01/09/19	86 2	210.0	2.4	2.2	0.0	0.01	405.0	0.01	4.4	88.0	1.60	0.5	9.7					
							WATER LE	EV EL DET	AILS									
PIPE	DATE	MEASU	RE N/R	RMK LOG	;	PIPE	DATE			RMK LO	G	PIPE	DATE	MEASU	RE N/R	RMK	LOG	
														(m)				
x	13/09/197	4 85 80	N			x	20/11/198	35 85 08	N									
							WIRE LIN		ETAILS									
	DATE		UN	OPERATOR		-	TYPE	SOURCE			TOP	воттом	COM	MENTE				
	DATE	E E	UN	OPERATOR			ITE	SOURCE	-		TOP	BOTTOM	COM	M LINES				
	03/08/20	00 1		B ISBISTER		0	ALU	QUILPIE			249.91	253.61						
	03/08/20	00 2		B ISBISTER		C	ALU	QUILPIE			-1.47	901.43						
	03/08/20	00 1		B ISBISTER		0	SR .	QUILPIE			49.02	901.52						
	03/08/20	00 2		B ISBISTER		0	GR	QUILPIE			-1.52	901.38						
							FIELD M	EASURE	MENTS									
	PIPE	DATE		DEPTH	COND		рН Т	EMP	NO3	DC		Eh	ALK	METH	SOURCE			
				(m)	(uS/cm)			(C)	(mg/L)	(mg/L)	(m V)						
	A	07/10/193						75.0						PU	GB			
	A	14/11/193						75.0						PU	GB			
	Α	29/10/194						75.0						PU	GB			
	A	13/09/194						75.0						PU	GB			
	Α	29/08/196						75.0						PU	GB			
	A	30/03/196						73.0						PU	GB			
	A	08/10/197						73.5										
	Α	12/05/198						73.0						PU	GB			
	Α	20/11/198	5					75.0						PU	GB			

SPECIAL WATER ANALYSIS

**** NO RECORDS FOUND ****

Page 6 of 7

GROUNDWATER DATABASE

DATE 22/08/2012

BORE CARD REPORT - PUBLISHABLE

REG NUM BER 390

VALIDATION LOG - PART 1

REGDET	CASING	STRLOG	AQUIFR	PUMTES	ELVDET	WLVDET	FIELDQ
Y 26/11/1990	Y 26/11/1990	Y 20/11/2000	Y 26/11/1990	Y 26/11/1990	Y 26/11/1990	Y 26/11/1990	Y 26/11/1990
			VALIDATION LOG	6 - PART 2			
WATANL	SAMPLE	STRTIG	WIRLOG	MULCND	BRCOND	FPREAD	GNOTES
Y 26/11/1990		Y 26/11/1990		Y 26/11/1990			

GENERAL NOTES

**** NO RECORDS FOUND ****

2

3

1.00

20.00

BORE CARD REPORT - PUBLISHABLE

REG NUM BER 116266

REGISTRATION DETAILS

				BASIN 0	112		TITUDE 2	6-37-05	MAP-SCALE	254	
OFFICE Charle	ville		SU	B-AREA					MAP-SERIES		
DATE LOG RECD 19/MA			00.		150-QUILPIE		ASTING 2		MAP-NO		
D/O FILE NO. V17 0				LOT 3		_	RTHING 7		MAP NAME		
R/O FILE NO.	214			PLAN S			ZONE 5		PROG SECTION		
H/O FILE NO.		OR	IGINAL DESCR		204010	400	URACY G	-	PRES EQUIPMENT		
							PS ACC	3			
GIS LAT	-2	6.61809	PARIS	NAME 5	162-WOORBIL		SACC		ORIGINAL BORE NO		
GIS LNG	144.2	2737307	с	OUNTY N	ICKAVILLA				BORE LINE	-	
CHECKED Y			PROPERTY	YNAME							
			FIELD LOO	CATION					POLYGON		
									RN OF BORE REPLACED		
FACILITY TYPE AF			DATE	DRILLED 0	7/03/2009				DATA OWNER		
STATUS EX			DRILLER	SNAME T	AYLER, STEPH	HEN CHARLES			CONFIDENTIAL	Ν	
ROLES WS			DRILL CO	MPANY D	ALY BROS						
			METHOD OF	CONST. N	IUD ROTARY						
						CASING DETAILS					
	PIPE	DATE	RECORD NUM BER	MATERIAL	DESCRIPTION		-	E SIZE DESC)	OUT SIDE DIAM	TOP (m)	BOTTOM (m)
	А	21/02/2009	1	Steel Casin	g (unspecified))	6.40	0 WT	219	0.00	156.00
	А	21/02/2009	2	Grout					279	0.00	156.00
	А	04/03/2009	3	Steel Casin	g (unspecified))	6.40	o wt	168	0.00	817.00
	А	05/03/2009	4	Grout					200	0.00	817.00
	А	07/03/2009	5	Steel Casin	g (unspecified))	6.00	o wt	141	809.30	966.30
	А	07/03/2009	6	Perforated	or Slotted Casi	ing	3.00	0 AP	141	858.30	966.30
						RATA LOG DETA	ILS				
		ECORD JM BER	STRATA TOP (m)	BOT	(m)	DESCRIPTION					
		1	0.00	1	1.00 TOP SOI	L					

20.00 WHITE ROCK

61.00 GREY CLAY

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 116266

REC ORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
4	61.00	73.00	SDST
5	73.00	85.00	GREY CLAY
6	85.00	93.00	SDST
7	93.00	111.00	GREY SHALE
8	111.00	136.00	SHALE & SILTSTONE
9	136.00	143.00	GREY SHALE
10	143.00	870.00	SILTSTONE WITH SHALE LAYERS
11	870.00	904.00	WHITE MUDSTONE
12	904.00	914.00	SHALE & SDST LAYERS ****
13	914.00	930.00	SDST **** 45 L/SEC
14	930.00	960.00	SILTSTONE AND SDST LAYERS
15	960.00	966.30	SHALE WITH SILTSTONE

STRATIGRAPHY DETAILS

**** NO RECORDS FOUND ****

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR (I/s)	CONDIT	FORMATION NAME
1	914.00	960.00	SDST	07/03/2009	79.70	Y	POTABLE	Y	PS	HOORAY SANDSTONE

PUMP TEST DETAILS PART 1

**** NO RECORDS FOUND ****

PUMP TEST DETAILS PART 2 ***** NO RECORDS FOUND ****

BORE CONDITION

DRAIN DETAILS HEADWORKS						RKS					
DATE	TOT LEN (km)	MAXC RUND (km)N	RET LEN (km)	D	т	LEAK	FLOW IRREGULARITY	PRECIPITATE	EST USE (ML/yr)	STOC CATTLE	 COMMENT

Page 2 of 5

Page 3 of 5

GROUNDWATER DATABASE

BORE CARD REPORT - PUBLISHABLE

DATE 18/07/2012

REG NUMBER 116	266													
26/03	3/2008			G F							Townsu tested.	pply not hool	ed up wh	en
					ELE	VATION DE	TAILS							
	F	PIPE DATE	ELEVA	TION PRECISION	DATUM	MEA	SUREMENT I	POINT SUF	RVEY SOURCE					
)	X 26/MAR/09	18	88.00 GPS	AHD	N		JOH	IN YOUNG					
					WATE	RANALYSI	S PART1							
PIPE D	DATE	RD ANALYST	QAN	DEPTHRMK (m)		COND p S/cm)	H Si (mg/L)	TOTAL IONS	TOTAL SOLIDS	HARD	ALK I	FIG. OF MERIT	SAR	RAH
A 26/0	03/2009	1 GCL	195495	914.00 PU	GB	778 8	6 43	621.00	488.00	6	296	0.0	32.0	5.80
					WATE	RANALYSI	S PART 2							
PIPE DATE	RD	Na	K Ca	Mg M			CO3	CI	F NO3	\$ 04	Zn	AI	в	Cu
A 26/03/200		184.0 2		0.1 < 0.0) < 0.01	7.9		1.90 < 0.5	4.6			0.27	< 0.03
						<u>r level de</u> Ecords fo								
						LINE LOG I RECORDS F								
					FIELD	DMEASURE	MENTS							
	PIPE	DATE	DEPTH (m)	COND (uS/cm)	рН	TEMP (C)	NO3 (mg/L)	DO (mg/L)	Eh (mV)	ALK	METH	SOURCE		
	А	26/03/2009	914.00	794	9.2	78.0					PU	GB		
					SPECIA	L WATER	NALYSIS							
					**** N O	RECORDS F	OUND ****							
					VALID	ATION LOG	- PART 1							
I	REGDE	T CAS	ING	STRLOG	AQUIFI	R	PUMTES	ELVD	ET V	VLVDET	I	FIELDQ		

Y 27/03/2009

Page 4 of 5

GNOTES

GROUNDWATER DATABASE

DATE 18/07/2012

BORE CARD REPORT - PUBLISHABLE

MULCND

BRCOND

FPREAD

REG NUMBER 116266

VALIDATION LOG - PART 2

WATANL SAMPLE

STRTIG

WIRLOG

GENERAL NOTES

**** NO RECORDS FOUND ****

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 358

REGISTRATION DETAILS

				BASIN	0031	LATIT	UDE 2	26-40-10	MAP-SCAL	E 254	
OFFICE Charle	eville		SU	B-AREA		LONGIT	UDE 1	143-16-22	MAP-SERIE	SM	
DATE LOG RECD				SHIRE	6150-QUILPIE	EAST	ING 7	726185	MAP-N	0 SG54-12	2
D/O FILE NO. V17 0	465			LOT	-	NORTH	ING 1	7048162	MAP NAM	I E EROMAN	IGA
R/O FILE NO. 56113	33			PLAN	GO23	Z	ONE {	54	PROG SECTIO	N	
H/O FILE NO. L0484	IB		ORIGINAL DESCI	RIPTION	EROMANGA TOWN	ACCUR	ACY	GPS	PRES EQUIPMEN	т	
						GPS /	ACC	4			
GIS LAT	-26.6	6938894	PARIS	HNAME	1782-EROUNGHOOLA				ORIGINAL BORE N	O EROMAI	NGA NO 2 BORE
GIS LNG	143.3	2727374	c	OUNTY	GORDON				BORELIN	E -	
CHECKED Y			PROPERTY	Y NAM E							
			FIELD LO	CATION					POLYGO	N	
									RN OF BORE REPLACE	D	
FACILITY TYPE AF			DATE	DRILLED	03/03/1909				DATA OWNE	R	
STATUS EX			DRILLER	S NAME					CONFIDENTIA	L	
ROLES			DRILL CO	MPANY							
			METHOD OF	CONST.	CABLE TOOL						
					CASING	DETAILS					
	PIPE	DATE		MATERI	AL DESCRIPTION	M		E SIZE DESC	OUTSIDE	тор	BOTTOM
			NUM BER				(m n	1)	DIAM	(m)	(m)
	А	03/03/190	9 1	Steel Ca	sing (unspecified)			WT	203	0.00	89.30
	Α	03/03/190	9 2	Steel Ca	sing (unspecified)			WT	152	0.00	915.60
	А	03/03/190	9 3	Steel Ca	sing (unspecified)			WT	127	0.00	1303.63
	А	03/03/190	9 4	Steel Ca	sing (unspecified)			WT	254	0.00	13.10
	А	03/03/190	9 5	Perforate	ed or Slotted Casing			AP		1276.20	1303.63
	х	17/10/198	5 1	Grout					190	1.50	7.80
	х	22/11/198	5 1	Grout					142	1.50	95.00

STRATA LOG DETAILS

304

0.00

1.50

RECORD	STRATA	STRATA	STRATA DESCRIPTION
NUM BER	TOP (m)	BOT (m)	
1	0.00	13.11	CLAY AND COPIE

1 Grout

X 28/11/1985

Page 1 of 64

BORE CARD REPORT - PUBLISHABLE

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
2	13.11	51.82	GRAVEL AND ROCK
3	51.82	65.53	CLAY
4	65.53	480.36	SHALE WITH HARD STREAKS OF LIMESTONE
5	480.36	587.65	SANDROCK SEAMS OF CLAY
6	587.65	932.69	SHALE AND LIMESTONE
7	932.69	1089.66	SHALE SAND SEAMS
8	1089.66	1149.10	SHALE WITH BANDS OF SANDROCK
9	1149.10	1207.01	SHALE
10	1207.01	1220.11	SHALE SANDROCK
11	1220.11	1275.89	SANDSTONE AND SHALE
12	1275.89	1286.26	SHALE WITH BARS SANDROCK
13	1286.26	1303.63	SANDROCK

STRATIGRAPHY DETAILS

SOURCE	RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
DNR	1	0.00		QUATERNARY ALLUVIUM
DNR	2			WINTON FORMATION
DNR	3			MACKUNDA FORMATION
DNR	4			ALLARU MUDSTONE
DNR	5			TOOLEBUC FORMATION
DNR	6			WALLUMBILLA FORMATION
DNR	7		1207.00	CADNA-OWIE FORMATION
DNR	8	1207.00	1303.63	HOORAY SANDSTONE

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR (I/s)	CONDIT	FORMATION NAME
1	13.70		GRAV					N	UC	WINTON FORMATION
2	499.90		SDST					N	PS	MACKUNDA FORMATION
3	1213.10		SDST					N	PS	HOORAY SANDSTONE

DATE 10/02/2012

BORE CARD REPORT - PUBLISHABLE

REG NUM BER 358

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR (I/s)	CONDIT	FORM ATION NAME
4	1234.40		SDST					N	PS	HOORAY SANDSTONE
5	1260.30		SDST					N	PS	HOORAY SANDSTONE
6	1286.30		SDST					Y	PS	HOORAY SANDSTONE
7	1297.20		SDST					Y	PS	HOORAY SANDSTONE

PUMP TEST DETAILS PART 1

**** NO RECORDS FOUND ****

PUMP TEST DETAILS PART 2

**** NO RECORDS FOUND ****

BORE CONDITION

	DRAIN	DETAILS		HE/	ADWO	RKS						
DATE	тот	MAXC	RET	С	С	LEAK	FLOW		EST USE			
	LEN	RUN D	LEN	D	Т		IRREGULARITY	PRECIPITATE	(ML/yr)	CATTLE	SHEEP	COMMENT
	(km)	(km) N	(km)	Ν	L							
16/11/1998				G	F		GAS					BORE SUPPLIES TOWN & 4KMOF
00/40/2004	4.0	-	5.00	~	-				24.6	400		DRAIN, 1TROUGH, 1 TANK
08/10/2001	1.0	F	5.00	G	F				21.6	100		Bore supplies approximately 50
												houses 10 businesses two stock
												route tanks and 1 earth tank.
												Headworks - 127mm riser fitted with
												1x4hole flanges: 2x80 and 1x12mm
												couplings. Valves 1x100; 2x80mm
												gate valves and 1x12mm ball valve. 2x 20000gal tanks, 1km drains, stock
												100 sheep & cattle. 80mm valve to
												tow n leaking w hen shut dow n.
29/09/2004	4.0			G	F				4	100		Bore supplies the tow n of Eromanga.
25/05/2004	4.0			0					4	100		bore supplies the town or borhanga.
							ELEVATION					
							ELEVATION	JETAILS				
		DATE		ION	DDD	CIELON		A SUDEMENT DOINT	eup/r	(SOUDCE		

PIPE	DATE	ELEVATION	PRECISION	DATUM	MEASUREMENT POINT	SURVEY SOURCE
х	03/MAR/09	158.20	EST	STD	Ν	
х	10/MAR/08	147.00	GPS	AHD	N	JOHN YOUNG

DATE 10/02/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 358

WATER ANALYSIS PART1

PIPE	DATI	E	RD ANALY	rst	QAN	DEPTH RM (m)	IK SRO	COND (uS/cm)	рH	Si (mg/L)	TOTAL IONS		TAL	HARD	ALK	FIG. OF MERIT	SAR	RAH
А	04/02/1	972	1 GCL		051587	PU	GB	2850	8.1		2686.30	178	37.12	15	1451			28.69
А	16/11/1	998	1 GCL		187012	1289.30 PU	GB	2720	8.7	58	2586.23	181	12.24	14	1444	0.0	84.9	28.58
А	10/03/2	800	1 GCL		195483	1286.00 PU	GB	2820	8.7	61	2620.00) 182	20.00	14	1470	0.0	84.0	29.00
								WATER ANAL	YSIS F	ART 2								
PIPE DA	ATE	RD	Na	к	Ca	Mg	Mn	HC O3	Fe	CO3	CI	F	NO3	S O4	Zı	n Al	в	Cu
A 04/02	/1972	1	754.0		6.0			1769.0			122.0	4.30		31.0				
A 16/11	/1998	1	731.3	12.6	5.3	0.2	0.01	1636.6 (0.01	61.4	107.8	3.55	0.0	27.4	0.1	6 0.04	3.70	0.01
A 10/03	/2008	1	724.0	12.0	5.1	0.3	0.01	1680.0 (0.01	55.0	108.0	3.70	< 2.5	30.0	< 0.0	1 < 0.05	3.60	< 0.03

WATER LEVEL DETAILS **** NO RECORDS FOUND ****

WIRE LINE LOG DETAILS

DATE	RUN	OPERATOR		TYPE	SOURCE		ТОР	BOTTOM	COMMENTS	
30/07/2000	1	B ISBISTER		CALU	EROMAN	IGA	941.73	950.93		
30/07/2000	2	B ISBISTER		CALU	EROMAN	IGA	1298.5	1302		
31/07/2000	1	B ISBISTER		CALU	EROMAN	IGA	1277.38	1296.28		
31/07/2000	2	B ISBISTER		CALU	EROMAN	GA	1194.65	1277.5		
31/07/2000	3	B ISBISTER		CALU	EROMAN	GA	595.8	601		
31/07/2000	1	B ISBISTER		GR	EROMAN	GA	.14	1301.84		
31/07/2000	2	B ISBISTER		GR	EROMAN	GA	13	1301.67		
01/08/2000	1	B ISBISTER		CALU	EROMAN	GA	999.16	1004.06		
01/08/2000	2	B ISBISTER		CALU	EROMAN	IGA	.16	1301.91		
				FIEL	DMEASUREN	IENTS				
PIPE	DATE	DEPTH	COND	pН	TEMP	NO3	DO	Eh	ALK METH	SOUR

	FIELD M EASUREMENTS										
PIPE	DATE	DEPTH	COND	pH	TEMP	NO3	DO	Eh	ALK	METH	SOURCE
		(m)	(uS/cm)		(C)	(m g/L)	(mg/L)	(mV)			
А	01/03/1909				92.0					PU	GB

DATE 10/02/2012

BORE CARD REPORT - PUBLISHABLE

REG NUM BER 358

PIPE	DATE	DEPTH (m)	COND (uS/cm)	pН	TEMP (C)	NO3 (mg/L)	DO (mg/L)	Eh (mV)	ALK	METH	SOURCE
Α	08/09/1929				91.0					PU	GB
Α	12/04/1955				74.0					PU	GB
А	07/02/1964				86.0					PU	GB
А	04/02/1972				86.0					PU	GB
А	25/01/1977				46.0					PU	GB
А	16/11/1998		2800	7.4	91.0					PU	
А	08/10/2001	1303.60	3006	7.8	89.9					PU	GB
А	29/09/2004		3150	8.2	97.0					PU	GB
А	10/03/2008		2860	7.7	99.0					PU	GB

SPECIAL WATER ANALYSIS

**** NO RECORDS FOUND ****

VALIDATION LOG - PART 1

REGDET	CASING	STRLOG	AQUIFR	PUMTES	ELVDET	WLVDET	FIELDQ
Y 27/01/2005	Y 26/11/1990	Y 20/11/2000	Y 26/11/1990				

			VALIDATION LO	<u>G - PART 2</u>			
WATANL	SAMPLE	STRTIG	WIRLOG	MULCND	BRCOND	FPREAD	GNOTES
Y 26/11/1990		Y 26/11/1990		Y 26/11/1990			

GENERAL NOTES

PIPE	DATE	REC	NOTES
А	01/11/2001	1	Phone 46561133 Quilpie Shire Engineer who will arrange to advertise shut down of bore. 1 weeks notice required.
			Plumber AI McNeil 04 2756 1198

DATE 23/11/2005

BORE CARD REPORT

REG NUMBER 116169

REGISTRATION DETAILS

					_				
		BASIN	0112	LATITUDE	25	54-4	1	MAP-SCALE	254
OFFICE Charle	eville	SUB-AREA		LONGITUDE	14	4-36-	12	MAP-SERIES	N
DATE LOG RECD 18/00	CT/05	SHIRE	6150-QUILPIE	EASTING	25	59909		MAP-NO	SG55-5
D/O FILE NO. V17 0	166	LOT	36	NORTHING	i 71	3307	I	MAP NAME	ADAVALE
R/O FILE NO.		PLAN	MCK5320	ZONE	55	5		PROG SECTION	
H/O FILE NO.		ORIGINAL DESCRIPTION		ACCURACY	G	PS		PRES EQUIPMENT	HW
				GPS ACC	2		3		
GIS LAT	-25.9012315	PARISH NAME	23-ADAVALE					ORIGINAL BORE NO	ADAVALE TOWN BORE
GIS LNG	144.6035239	COUNTY	MCKINLAY					BORE LINE	-
CHECKED Y		PROPERTY NAME	ADAVALE TOWN						
		FIELD LOCATION						POLYGON	
								RN OF BORE REPLACE	305
FACILITY TYPE AF		DATE DRILLED	08/OCT/05					DATA OWNER	
STATUS EX			DALY, KENNETH PATRICK					CONFIDENTIAL	N
ROLES WS		DRILL COMPANY	DALY BROS. PTY. LTD.						
		METHOD OF CONST.	MUD ROTARY						

LICENSE DETAILS

**** NO RECORDS FOUND ****

CASING DETAILS

pip E	DATE	RECORD NUMBER	MATERIAL DESCRIPTION	MAT SIZE (mm)	SIZE DESC	OUTSIDE DIAM (mm)	TOP (m)	BOTTOM (m)
А	12/09/2005	1	Steel Casing (unspecified)	6.400	WT	219	0.00	192.50
А	12/09/2005	2	Grout			279	0.00	192.50
А	27/09/2005	3	Steel Casing (unspecified)	6.400	WT	168	0.00	1000.00
А	27/09/2005	4	Grout			200	0.00	1000.00
А	03/10/2005	5	Steel Casing (unspecified)	6.400	WT	141	992.00	1184.00
А	03/10/2005	6	Perforated or Slotted Casing	8.000	AP	141	1100.00	1184.00

STRATA LOG DETAILS

RECORD	STRATA	STRATA	STRATA DESCRIPTION
NUMBER	TOP (m)	BOT (m)	
1	0.00	1.00	RED TOP SOIL

Page 1 of 4

GROUNDWATER DATABASE

BORE CARD REPORT

REG NUMBER 116169

RECORD NUMBER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
2	1.00	3.50	RED/YELLOW CLAY
3	3.50	10.60	YELLOW/GREY CLAY
4	10.60	13.60	GRAVEL
5	13.60	20.60	WHITE ROCK
6	20.60	22.60	YELLOW/WHITE & GREY CLAY
7	22.60	42.00	GREY CLAY
8	42.00	55.00	WHITE/GREY CLAY
9	55.00	57.00	LIGHT GREY CLAY
10	57.00	60.00	COAL
11	60.00	63.00	LIGHT GREY CLAY
12	63.00	109.00	GREY CLAY
13	109.00	372.00	GREY SHALE
14	372.00	373.00	WHITE ROCK
15	373.00	800.00	GREY SHALE
16	800.00	806.00	PUGGY SHALE
17	806.00	944.00	GREY SHALE
18	944.00	1037.00	DARK GREY SHALE WITH HARD & SOFT BAND
19	1037.00	1053.00	SANDSTONE
20	1053.00	1067.00	MUDSTONE WITH SHALE LAYERS
21	1067.00	1070.50	VERY HARD GREY SHALE
22	1070.00	1094.50	LIGHT GREY SILTSTONE
23	1094.50	1112.00	PUGGY GREY SHALE
24	1112.00	1184.00	SANDSTONE ***** 35L/SEC 675KPA

STRATIGRAPHY DETAILS

**** NO RECORDS FOUND ****

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR (I/s)	CONDIT	FORMATION NAME
1	0.00	373.00	CLAY					N	PS	WINTON FORMATION

GROUNDWATER DATABASE

DATE 23/11/2005

BORE CARD REPORT

REG NUMBER 116169

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR (I/s)	CONDIT	FORMATION NAME
2	373.00	800.00	SHLE					N	PS	ALLARU MUDSTONE
3	800.00	1037.00	SHLE					N	PS	WALLUMBILLA FORMATION
4	1037.00	1053.00						N	SC	WYANDRA SANDSTONE MEMBER
5	1053.00	1112.00						N	SC	CADNA-OWIE FORMATION
6	1112.00	1184.00	SDST					Y	PS	HOORAY SANDSTONE
					PUMP TEST D	ETAILS P	ART 1			

					FOMP TEST	DETAILS FAILT	1					
PIPE	DATE	REC RN OF NO. PUMP-BORE	TOP (m)	BOTTOM (m)	DIST METH (m)	TEST TYPES	PUMP TYPE	SUCTION SET	Q PRIOR TO TEST		PRES ON ARRIV	Q ON ARRIV
								(m)	(l/s)	(min)	(m)	(l/s)
А	18/10/2005	1 116169	1100.00	1184.00	0.70 ART	AC ST FR ST			0.00	10	70.51	3.00
						DT						

						PUMP TES	F DETAILS P	ART 2						
PIP	DATE	REC TEST	SWL	RECOV.	RESID.	MAX DD	Q at	TIME TO	Max	CALC	DESIGN	DESIGN	SUCT. TMSY	STOR
E		DUR	(m)	TIME	DD	or P RED	MAX DD	MAX DD	Q	STAT	YIELD	BP	SET (m2/DAY)	
		(mins)		(mins)	(m)	(m)	(l/s)	(mins)	(l/s)	HD (m)	(l/s)	(m)	(m)	
А	18/10/2005	1 380	73.06	120		61.82	45.54	120	45.54	73.24			287	

BORE CONDITION

**** NO RECORDS FOUND ****

ELEVATION DETAILS

PIP	DATE	ELEVATION	PRECISIO	DATUM	MEASURE	MENT POINT	SURVEY SOURCE	
x	18/OCT/05	229.00	GPS	AHD	N		JOHN YOUNG	

WATER ANALYSIS PART1

**** NO RECORDS FOUND ****

WATER ANALYSIS PART 2

**** NO RECORDS FOUND ****

GROUNDWATER DATABASE

DATE 23/11/2005

BORE CARD REPORT

REG NUMBER 116169

WATER LEVEL DETAILS **** NO RECORDS FOUND **** WIRE LINE LOG DETAILS

**** NO RECORDS FOUND ****

FIELD MEASUREMENTS

**** NO RECORDS FOUND ****

SPECIAL WATER ANALYSIS

**** NO RECORDS FOUND ****

VALIDATION LOG - PART 1

REGDET	CASING	STRLOG	AQUIFR	PUMTES	ELVDET	WLVDET	FIELDQ

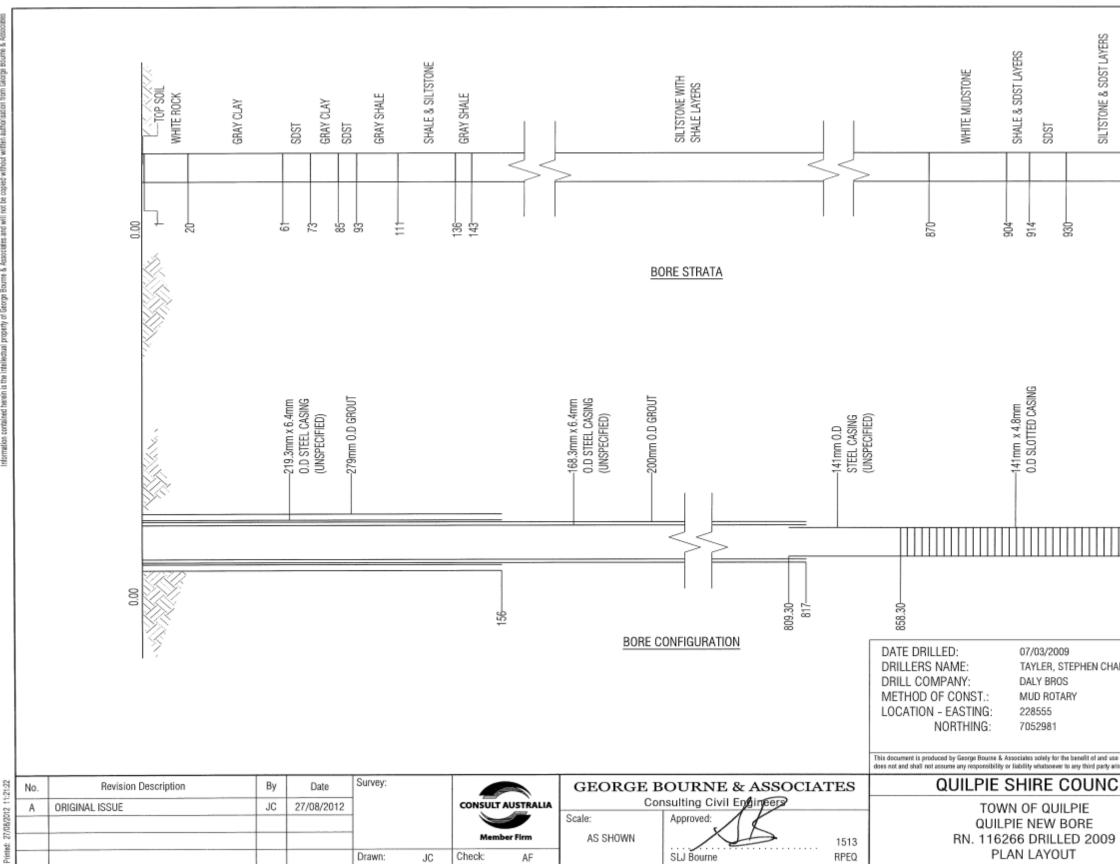
N 02/11/2005

WATANL

 VALIDATION LOG - PART 2

 SAMPLE
 STRTIG
 WIRLOG
 MULCND
 BRCOND
 FPREAD
 GNOTES

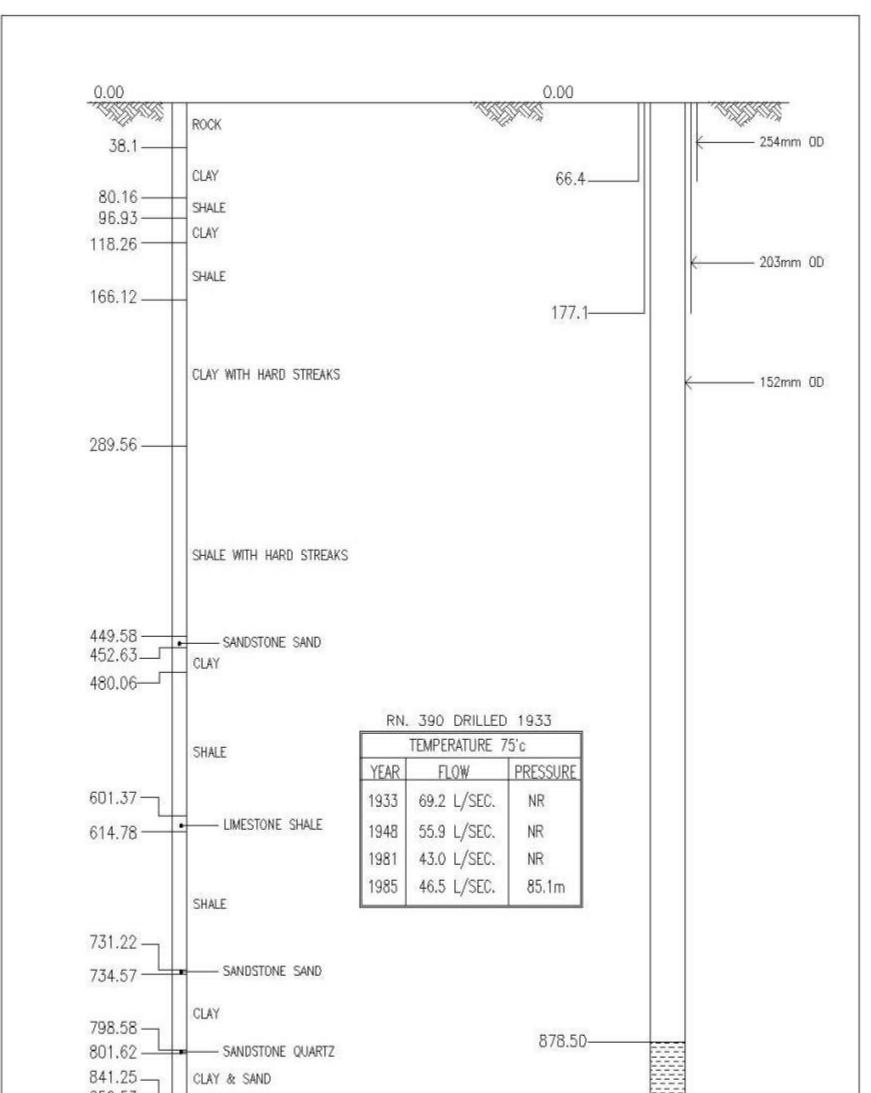
GENERAL NOTES

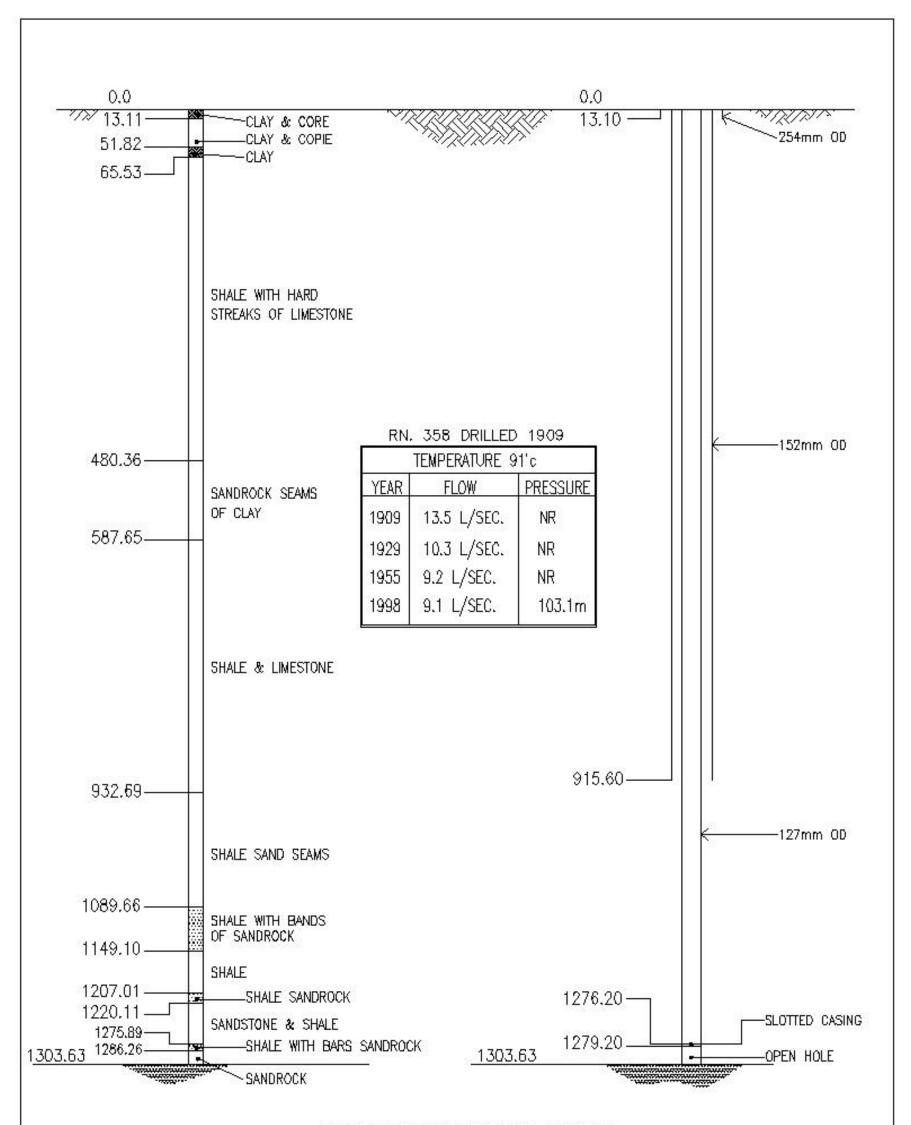

**** NO RECORDS FOUND ****

METERED USE

**** NO RECORDS FOUND ****

** End of Report **


APPENDIX D BORE CASING AND STRATA DETAILS


SHALE WITH SILTSTONE					
960 966.30					
966.30					
ARLES					
ie by the client rising out of an	t in accordance with ry use or reliance by	the terms of the relair whird party on the cor	ter. George Bourne & Ass tent of this document.	aciates	\leq
CIL		Job No.	11/16A	Rev.	
		Drawing No.			0
,		2012-	064/01	А	ORIGIN
,		Category:	WATER	A3	0

. . . .

1.16

		852.53 858.01 873.25 SA	– SANDROCK DROCK				SLOTTED CASING			
	8	399.80 882.40	<u></u>			900.50 901.10 VN BORE				
			Geon			IN BOILE				
A	SLOTTE	D CASSING DEPTH CHANGE	מ	LL1	05/10/06					
Roy.	<u></u>			By	Dato			_		
Sur.			BOURNE & ASSOCIATES			QUILPIE SHIRE COUNCIL	.ok det.			
Des.		Const	ulting Civil Engineers	-		Quilpie Town Bore	Durg. No.	Rey		
Diaz.	-13-94-96	Scale: "strd."	Approved:			RN. 390 Drilled 1933	87-00/1	A		
CHk.			*********					Plan Layout	Cat, Water	A4

			EROMANGATOW	<u>N BORE</u>	
G	EORGE CONSUI	BOURNE TING CIVIL	& ASSOCIATES ENGINEERS	Assoc. Dwgs:	Size: A4
Surv.	Approved:		QUILPIE SHI	RE COUNCIL	Dwg No.
Des. Drw. H.A 04/00	Scale:		EROMANGA	TOWN BORE	86-00
Chk.			RN. 358 DF	RILLED 1909	No. 1 of 1

APPENDIX E ACKNOWLEDGEMENT OF NON-POTABLE WATER SUPPLIES (EROMANGA AND ADAVALE)

QUILPIE SHIRE COUNCIL Queensland File/Ref DWR/515/104(0400) Government 2 4 FEB 2010 23 February 2010 ACTION angle - So Department of Mr Carl Ninine **Environment and Resource** nempletete Chief Executive Officer Management Quilpie Shire Council melmites P O Box 57 Quilpie QLD 4480 Dear Mr Ninine

Thank you for your letter to our Toowoomba office dated 25 September 2009 regarding Eromanga and Adavale water supplies and I apologise for the delay in responding.

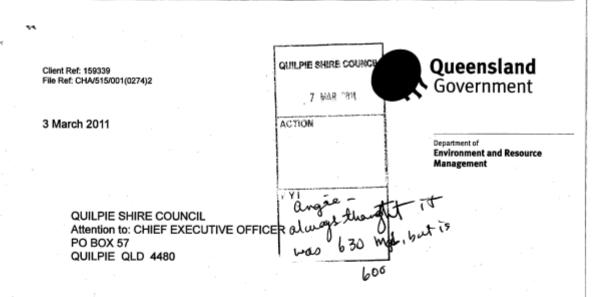
The department acknowledges Council's advice that the above water supply schemes do not provide a drinking water service. On this basis, Council is not required to provide monitoring reports and to report drinking water quality parameter exceedences for Eromanga and Adavale water supply schemes as outlined in the *Drinking Water Service Provider Monitoring and Reporting Requirement Notice* and covering letter of 3 December 2008.

However you are advised that, as Council is providing a non-drinking water supply service, it has a duty of care to ensure action is taken to inform all residents and visitors of the public health limitations of the water supply.

To assist service providers, the department is preparing – in consultation with Queensland Health – information outlining the appropriate uses for non-drinking water and the measures that should be employed to establish and maintain an adequate level of community awareness regarding public safety when using such supplies.

Community awareness measures generally involve appropriate signage on publically accessible taps as well as periodic reminders to all households through mechanisms such as rate notices.

Once the information has been finalised, a copy will be forwarded to you. Should you have any further enquiries, please do not hesitate to contact Mr Ian Ryan, Principal Engineer - Western Queensland of the department on telephone 4688 1014.


Yours sincerely

AKK wou

Russell Cuerel Manager Infrastructure Management Water Industry Asset Management & Standards Office of the Water Supply Regulator

> Level 3, 41 George Street GPO Box 2454, Brisbane Queensland 4001 Australia Telephone + 61 7 3247 0369 Facsimile + 61 7 3224 7999 Website www.derm.qld.gov.au

APPENDIX F WATER LICENCES

Dear Sir/Madam

Application for Renewal of Water Licence: reference 00390E, application reference 529540

Attached is a Water Licence granted in accordance with the provisions of the Water Act 2000.

Please note that this Water Licence does not negate the requirement to obtain any other approvals or to enter into other statutory arrangements, such as those relating to Aboriginal cultural heritage, which may be required. In particular, the *Aboriginal Cultural Heritage Act 2003*, places a duty of care on anyone undertaking an activity to protect Aboriginal Cultural Heritage. Please refer to the attached information sheet for further information on this legislation.

If you have any further enquiries please call (07) 46881000.

Yours Sincerely

5 Orgo

Margaret McClymont Administration Officer

DEEDI / DERM Complex 203 Tor Street TOOWOOMBA PO BOX 318 TOOWOOMBA 4350 Telephone +61 7 46881000 Facsimile +61 7 746881188

WATER LICENCE Water Act 2000

Reference	00390E	Expiry Date	31/03/2021				
Licensee	QUILPIE SHIRE	COUNCIL					
Authorised Activity	The taking of underground water from the Warrego West 3 Management Unit (Great Artesian Basin) with the point of take under Lot 1 on Q68045 and Lot 1 on Q68042.						
Authorised Purpose	Urban						
Nominal Entitlement	600 Megalitres						

This water licence is subject to the conditions endorsed hereon or attached hereto.

Under the Sustainable Planning Act 2009 a development permit may be required for operational works to take or interfere with the water described in this licence. The licensee must ensure that the relevant development approvals have been obtained prior to installing or constructing new or additional operational works.

Given at Charleville this THIRD day of MARCH 2011.

John Bradley Director-General Department of Environment and Resource Management

Client Ref: 159339 File Ref: CHA/515/001(0274)2 Location: DEEDI / DERM Complex, 203 Tor Street, QLD Water Licence: 00390E Expiry Date: 31/03/2021

Conditions: Schedule A

6.31

The water taken under this water licence must be reticulated by pipeline to tanks and troughs. The use of a bore drain or a system of bore drains to distribute any of the water taken is not permitted.

Client Ref: 159339 File Ref: CHA/515/001(0274)2 Location: DEEDI / DERM Complex, 203 Tor Street, QLD Water Licence: 00390E Expiry Date: 31/03/2021

.

Conditions: Schedule B

Spec 1

The supply of water from this bore shall be controlled to the satisfaction of the chief executive, by valves and piping to the town reticulation system and shall not be permitted to flow outside that system.

Client Ref: 159339 File Ref: CHA/515/001(0274)2 Location: DEEDI / DERM Complex, 203 Tor Street, QLD Postal: PO BOX 318 TOOMOONBA Client Ref: 159339 File Ref: CHA/515/001(0465)2

9 September 2011

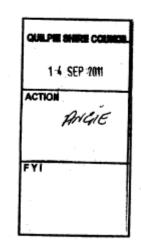
Department of Environment and Resource Management

QUILPIE SHIRE COUNCIL Attention to: CHIEF EXECUTIVE OFFICER PO BOX 57 QUILPIE QLD 4480

Dear Sir/Madam

Application for Renewal of Water Licence: reference 00358E, application reference 537003

Attached is a Water Licence granted in accordance with the provisions of the Water Act 2000.


Please note that this Water Licence does not negate the requirement to obtain any other approvals or to enter into other statutory arrangements, such as those relating to Aboriginal and Torres Strait Islander cultural heritage, which may be required. In particular, the *Aboriginal Cultural Heritage Act* 2003 and the *Torres Strait Islander Cultural Heritage Act* 2003, places a duty of care on anyone undertaking an activity to protect Aboriginal and Torres Strait Islander Cultural Heritage. Please refer to the attached information sheet for further information on this legislation.

If you have any further enquiries please call (07) 46881000.

Yours Sincerely

128/20/

Vanessa Marsh Administration Officer

DEEDI / DERM Complex 203 Tor Street TOOWOOMBA PO BOX 318 TOOWOOMBA 4350 Telephone +61 7 745851000 Facelimile +61 7 746851188 Website http://www.derm.old.gov.au/

WATER LICENCE Water Act 2000

Reference	00358E	Expiry Date	30/09/2021
Licensee	QUILPIE SH	IIRE COUNCIL	
Authorised Activity	The taking o Managemen Lot 8 on GO		m the Warrego West 3 asin) with the point of take under
Authorised Purpose	Stock and U	rban	
Description of Land	Attached to	the land described as Lo	ot 8 on GO23.
Nominal Entitlement	70 Megalitre	s	

This water licence is subject to the conditions endorsed hereon or attached hereto.

Under the Sustainable Planning Act 2009 a development permit may be required for operational works to take or interfere with the water described in this licence. The licensee must ensure that the relevant development approvals have been obtained prior to installing or constructing new or additional operational works.

Given at Charleville this NINTH day of SEPTEMBER 2011.

Jim Reeves Director-General Department of Environment and Resource Management

Client Ref. 159339 File Ref. CHA/515/001(0465)2 Location: DEEDI / DERM Complex, 203 Tor Street, QLD Water Licence: 00358E Expiry Date: 30/09/2021

Conditions: Schedule B

SPEC 01 The supply of water from this bore shall be controlled to the satisfaction of the chief executive, by valves and piping to the town reticulation system and shall not be permitted to flow outside that system.

Client Ref. 159339 File Ref. CHA/515/001(0465)2 Location: DEEDI / DERM Complex, 203 Tor Street, QLD Client Ref: 159339 File Ref: CHA/515/001(0166)

18 November 2010

Department of Environment and Resource Management

QUILPIE SHIRE COUNCIL Attention to: CHIEF EXECUTIVE OFFICER PO BOX 57 QUILPIE QLD 4480

Dear Sir/Madam

Grant of a water licence to replace an authority : reference 603804

Attached is an information notice which is advice of the decision and the reasons for the decision for the abovementioned granting of a water licence under a plan or declaration process in accordance with section 1037 of the *Water Act 2000*, which replaces a continuing authority under this Act.

If you have any further enquiries please call (07) 46881000.

Yours Sincerely

Teresa Lever Technical Officer

	SHIRE COUN	1
23	NON SOM	
CTION		
	i.	
	4	
FYI	•	
a	gu	

DEEDI / DERM Complex 203 Tor Street TOO/WOOMBA PO BOX 318 TOO/WOOMBA QLD 4350 Telephone +61 7 46881000 Facsimile +61 7 746861188 Website http://www.derm.gki.gov.su/

WATER LICENCE Water Act 2000

Dana 4 of 9

Reference	603804	Expiry Date	31/10/2020
Licensee	QUILPIE SHI	RE COUNCIL	
Authorised Activity	Management	underground water fro Unit (Great Artesian B 455 and Lot 36 on MCK	m the Warrego West 3 asin) with the point of take under (5320. Township of ADAVALE.
Authorised Purpose	Town Water S	Supply	
Nominal Entitlement	200 Megalitre	es .	

This water licence is subject to the conditions endorsed hereon or attached hereto.

Under the Sustainable Planning Act 2009 a development permit may be required for operational works to take or interfere with the water described in this licence. The licensee must ensure that the relevant development approvals have been obtained prior to installing or constructing new or additional operational works.

Given at Charleville this EIGHTEENTH day of NOVEMBER 2010.

lun

.

John Bradley Director-General Department of Environment and Resource Management

Client Ref. 159339 File Ref. CHA/515/001(0166) Location: DEED/ / DERM Complex, 203 Tor Street, QLD Poetsk PD ROX 318 TOO/WOOMBA, QLD, 4350

Water Licence: 603804 Expiry Date: 31/10/2020

Conditions: Schedule A

6.31

The water taken under this water licence must be reticulated by pipeline to tanks and troughs. The use of a bore drain or a system of bore drains to distribute any of the water taken is not permitted.

Client Ref: 159339 File Ref: CHA/515/001(0166) Location: DEEDI / DERM Complex, 203 Tor Street, QLD Postal: PO BOX 318, TOOWOOMBA, QLD, 4350 APPENDIX G LOCAL DISASTER MANAGEMENT GROUP CONTACT DETAILS

Position Title	Organisation Name	Contact Details					
QSC Mayor	Quilpie Shire Council	mayor@quilpie.qld.gov.au					
QSC CEO	Quilpie Shire Council	ceo@quilpie.qld.gov.au					
QSC Works Manager	Quilpie Shire Council	works@quilpie.qld.gov.au					
QPS – Officer in Charge – Quilpie	Queensland Police Service	Buln Buln St, Quilpie QLD 4480					
Area Director Scott Walsh	Emergency Management Qld	Scott.Walsh@dcs.qld.gov.au					
Mike Castles	SES Local Controller QSC	whs@quilpie.qld.gov.au					
Michael Thompson	SES Deputy Local Controller QSC	59 Jabiru St, Quilpie QLD 4480					
Officer in Charge Chris Seng	Queensland Police Service - Adavale	Klugh St, Adavale QLD 4474					
Robert Walker	SES Group Leaders QSC – Eromanga	Cranstoun, Eromanga QLD 4480					
CAPTAIN	QFRS – Quilpie Fire Brigade	PO Box 108, Quilpie QLD 4480					
	QAS – Quilpie	PO Box 27, Quilpie QLD 4480					
Guy McPherson	Ergon Energy	Winchu St, Quilpie QLD 4480					
DON	Queensland Health DON – Quilpie Hospital	PO Box 27, Quilpie QLD 4480					
CEO	Murweh Shire Council	95-101 Alfred St, Charleville QLD 4470					
CEO	Paroo Shire Council	49 Stockyard St, Cunnamulla QLD 4490s					
CEO	Bulloo Shire Council	53 Dowling St, Thargomindah QLD 4492					
CEO	Blackall-Tambo Regional Council	PO Box 21 Blackall QLD 4472.					
District Disaster Coordinator	Charleville District Disaster Management Group	56 Alfred St, Charleville QLD 4470					
Lyn Baxter	Quilpie Shire Council Library (Abridged version)	N/A					
Station Master	QRail	Quilpie Rail Depot, Quilpie QLD 4480					
Ralph Walker SES Member – Eromanga		eromangacontracting@harbours at.com.au					
Owen Cecil	SES Member - Eromanga	osweldingworks@yahoo.com.au					
Mitch Field	Telstra Account Manager	Mitch.Field@team.telstra.com					

Appendix H Typical water analysis for Eromanga Deep Artesian bore

	DATE 10/0212012					GF	ROUND	WATER	DATA	BASE					Pag	e 4	of 64
	ATE 10/0212012					BOR	E CARE	REPOR	T - PUBLI	SHABLE							
REG NUM	IBER 358															_	
							WATER	ANALYSI	C DADTA								
	PIPE DATE	RDANA	LYST	QAN	DEPTH R	/IK SRC	CC (uS/e	ND pł im)	H Si (mg/L)	TOTAL I ONS		OTAL DLIDS	HARD	ALK	FIG, OF MERIT	SAR	RA
	A D4/02/1972	1 GCL		051587	FL.	GB		2850 8,	1	2686,30	17	87.12	15	1451			28,6
	A 16/11/1998	1 0 0 0		137012	1289.30 FL	GB	2	2720 8.	7 58	2586.23		1224	14	1444	0.0	84.9	28.5
	A 10/0312008	1 GCL		195483	1286.00 FL	GB	1	820 8.	7 61	2620.00	18	20.00	14	1470	0.0	84.0	29.0
							WATER A	NALYS S	PART 2								
	E DATE RD	Na	K	Ca	Mg	Mn	HCO3	Fe	C03	CI	F	NOJ	S	04 Z	n Al	8	
	04/02/1972	754.0	10.0	6.0			1769.0			122.0	4,30		31	1.0			
	16/11/1998 10/0312008	731.3 724.0	126	0.0	0.2	0.01	1636.6	0.01	61,4	107.8	35.5	0.0		7.4 0.1	6 0.04	3.70	0
~		724.0	120	5.1	0.3	0.01	1680.0	0.01	55.0	108.0	3.70	₹ 2.5	30	0.0 < 0.0	1 < 0.05	3,60	< 0
								EVEL DE									
							NO	RECORD	SFOUND								
							WIREL	NE LOG E	EIAILS								
	DATE	f	RUN	OPERATOR		т	YPE	SOURCE	=		TOP	вотт	OM CO	OMMENTS			
	30/07/20	00		BISBISTER		C	ALU	EROMA	VGA	9	4173	950	1 93				
	30/07/20	00 2	2	BISBISTER		C	ALU	EROMA			1298.5		302				
	31/07/20	00		BISBISTER			ALL	EROMAI			77.38						
	31/07/20	00 2	2	BISBISTER			ALU	EROMAN			94.65		77.5				
	31/07/20	00	3	BISBISTER			ALU	EROMA			595.8		5D1				
	31/07/20	00		BISBISTER		G		EROMAN			. 14						
	31/07/20	00 2		BISBISTER		G		EROMAN			13						
	01/08/20			BISBISTER			ALU	EROMA			10						
	01/06/20	00 2	2	BISBISTER			AUU	EROMA			. 16						
	PIPE	DATE		DEPTH	COND			EASURE									
	FIFE	DATE		(m)	(uS/em)		pH .	(C)	N03 (mg/LJ	00 (mgil)		Eh (mVJ	ALM	(METH	SOURCE		